
Using Smart Clients to Build Scalable Services

Chad Yoshikawa, Brent Chun, Paul Eastham,
Amin Vahdat, Thomas Anderson, and David Culler

Computer Science Division
University of California

Berkeley, CA 94720

Abstract
Individual machines are no longer sufficient to handle the

offered load to many Internet sites. To use multiple ma-
chines for scalable performance, load balancing, fault trans-
parency, and backward compatibility with URL naming
must be addressed. A number of approaches have been de-
veloped to provide transparent access to multi-server Inter-
net services including HTTP redirect, DNS aliasing, Magic
Routers, and Active Networks. Recently however, portable
Java code and lightly loaded client machines allow the mi-
gration of certain service functionality onto the client. In
this paper, we argue that in many instances, a client-side ap-
proach to providing transparent access to Internet services
provides increased flexibility and performance over the ex-
isting solutions. We describe the design and implementation
of Smart Clients and show how our system can be used to
provide transparent access to scalable and/or highly avail-
able network services, including prototypes for: telnet,
FTP, and an Internet chat application.

1 Introduction

The explosive growth of the World Wide Web is
straining the architecture of many Internet sites. Slow
response times, network congestion, and “hot sites

This work was supported in part by the Defense Advanced Research
Projects Agency (N00600-93-C-2481, F30602-95-C-0014), the National
Science Foundation (CDA 0401156), California MICRO, the AT&T Founda-
tion, Digital Equipment Corporation, Exabyte, Hewlett Packard, Intel, IBM,
Microsoft, Mitsubishi, Siemens Corporation, Sun Microsystems, and Xe-
rox. Anderson was also supported by a National Science Foundation Pres-
idential Faculty Fellowship. Yoshikawa is supported by a National Science
Foundation Fellowship. The authors can be contacted at

�
chad, bnc,

eastham, vahdat, tea, culler � @cs.berkeley.edu.

of the day” being overrun by millions of requests
are fairly commonplace. These problems will only
worsen as the Web continues to experience rapid
growth. As a result, it has become increasingly impor-
tant to design and implement network services, such
as HTTP, FTP, and web searching services, to scale
gracefully with offered load. Such scalable services
must, at minimum, address the following issues:

� Incremental Scalability – If the offered load be-
gins to exceed a service’s hardware capacity, it
should be a simple operation to add hardware
resources to transparently increase system ca-
pacity. Further, a service should be able to
recruit resources to handle peaks in the load.
For example, while the US Geological Sur-
vey Web site (http://quake.usgs.gov)
is normally quite responsive, it was left com-
pletely inaccessible immediately after a recent
San Francisco Bay Area earthquake.

� Load Balancing – Load should be spread dynam-
ically among server resources so that clients re-
ceive the best available quality of service.

� Fault Transparency – When possible, the service
should remain available in the face of server and
network upgrades or failures.

� Wide Area Service Topology – Individual
servers comprising a service are increasingly
distributed across the wide area [Net 1994, Dig
1995]. The server machines that comprise a
network service should not be required to have a
restricted or static topology. In other words, all
servers should be allowed to arbitrarily migrate
to other machines.

� Scalable Service To Legacy Servers – Adding
scalability to existing network services such as
FTP,Telnet, orHTTP should not require mod-
ifications to existing server code.



Unfortunately, providing these properties for net-
work services while remaining compatible with the
de facto URL (Uniform Resource Locator) naming
scheme has proven difficult. URLs are by definition
location dependent and hence are a single point of fail-
ure and congestion. A number of efforts address this
limitation by hiding the physical location of a par-
ticular service behind a logical DNS hostname. Ex-
amples of such systems include HTTP redirect, DNS
Aliasing, Failsafe TCP, Active Networks, and Magic
Routers.

We argue that in many cases the client, rather than
the server, is the right place to implement transparent
access to network services. We will describe limita-
tions associated with each of the above solutions and
demonstrate how these limitations can be avoided by
moving portions of server functionality onto the client
machine. This approach offers the advantage of in-
creased flexibility. For example, clients aware of the
relative load on a number of FTPmirror sites can con-
nect to the least loaded mirror to deliver the highest
throughput to the end user. Ideally, the selection and
connection process takes place without any interven-
tion from the end user, unlike the Web today where
users must choose among FTP mirror sites manually.
Note that in this example, clients must take into ac-
count available network bandwidth to each mirror site
as well as the relative load of the sites to receive op-
timal performance. Such flexibility would be difficult
to provide with existing server-side solutions since in-
dividual servers may not have knowledge of mirror
site group membership and client location.

The migration of service functionality onto client
machines is enabled by two recent developments. To-
day, most popular Internet services, such as FTP,
HTTP, and search engines are universally accessed
through extensible Web browsers. This extensibility
allows insertion of service-specific code onto client
machines. In addition, the advent of Java [Gosling
& McGilton 1995] allows such code to be easily dis-
tributed to multiple platforms. Next, network latency
and bandwidth are increasingly the bottleneck to the
performance delivered to clients. Thus, client proces-
sors can be left relatively idle. We will demonstrate
that offloading service functionality onto these idle
cycles can substantially improve the quality of service
along the axis described above.

Motivated by the above observations, we describe
the design and implementation of Smart Clients to
support our argument for client-side location of code
for scalability and transparency. The central idea be-
hind Smart Clients is migrating server functionality
to the client machine to improve the overall qual-
ity of service in the ways described above. This ap-

proach contrasts the traditional “thin-client” model
where clients are responsible largely for displaying
the results of server operations. While our approach
is general, this paper concentrates on augmenting the
client-side architecture to provide benefits such as
fault transparency and load balancing to the end user.

The rest of this paper is organized as follows. Sec-
tion 2 discusses existing solutions to providing scal-
able services. The limitations of the existing solutions
motivates the Smart Client architecture, described in
Section 3. Section 4 demonstrates the utility of the ar-
chitecture by describing the implementation and per-
formance of interfaces for telnet, FTP, and a scal-
able chat service. Section 5 evaluates our require-
ments above in the context of the Smart Client archi-
tecture. Section 6 describes related work, and Sec-
tion 7 concludes.

2 Alternative Solutions

Existing architectures include DNS Aliasing [Brisco
1995, Katz et al. 1994], HTTP redirect [Berners-Lee
1995], Magic Routers [Anderson et al. 1996], fail-
safe TCP [Goldstein & Dale 1995], and Active Net-
works [Wetherall & Tennenhouse 1995]. Figure 1 de-
scribes how Smart Clients fits in the space of existing
solutions. We will describe each of the existing so-
lutions in turn leading to a description of the Smart
Client architecture.

A number of Web servers use Domain Name Server
(DNS) aliasing to distribute load across a number of
machines cooperating to provide a service. A single
logical hostname for the service is mapped onto mul-
tiple IP addresses, representing each of the physical
machines comprising the service. When a client re-
solves a hostname, alternative IP addresses are pro-
vided in a round-robin fashion. DNS aliasing has been
demonstrated to show relatively good load balancing,
however the approach also has a number of disadvan-
tages. First, random load balancing will not work as
well for requests demonstrating wide variance in pro-
cessing time. Second, DNS aliasing cannot account
for geographic load balancing since DNS does not
possess knowledge of client location/server capabil-
ities.

On a client request, HTTP redirect allows a server
to instruct the client to send the request to another lo-
cation instead of returning the requested data. Thus,
a server machine can perform load balancing among
a number of slave machines. However, this approach
has a number of limitations: latency to the client is
doubled for small requests, a single point of failure
is still present (if the machine serving redirects is un-



Host1 Host2

Host4Host3

Network Router
Service-Site

DNS Aliasing

Client Network Service

Active NetworksSmart Clients Magic Router/ HTTP Redirect/
Fail-safe TCP

Figure 1: This figure describes the design space for providing transparent access to scalable network services.
Transparency mechanisms can be implemented in a number of places, including the client, network, network
routers, or at the service site.

available, the entire service appears unavailable), and
servers can still be overloaded attempting to serve
redirects. Further, this mechanism is currently only
available for HTTP; it does not work with legacy ser-
vices nor does it optimize wide-area access.

The Magic Router provides transparent access by
placing a modified router on a separate subnet from
machines implementing a service. The Magic Router
inspects and possibly modifies all IP packets before
routing the packets to their destination. Thus, it
can perform load balancing and fault transparency
by mapping a logical IP address to multiple server
machines. If a packet is destined for the designated
service IP address, the Magic Router can dynami-
cally modify the packet to be sent to an alternative
host. Unresolved questions with Magic Routers in-
clude how much load can be handled by the router
machine before the dynamic redirection of the pack-
ets becomes the bottleneck (since it must process ev-
ery packet destined for a particular subnet). Magic
Routers also require a special network topology which
may not be feasible in all situations. Finally, the
Magic Router is not aware of the load metrics relevant
to individual services, i.e. it would have to perform
remappings based on a generic notion of load such as
CPU utilization.

Fail-safe TCP replicates TCP state across two in-
dependent machines. On a server failure, the peer
machine can transparently take over for the failed
machine. In this fashion, fail-safe TCP provides
fault transparency. However, it requires a dedicated
backup machine to mirror the primary server, and it
does not address the problem of the front-end be-
coming a bottleneck. Finally, both fail-safe TCP and

Magic Routers are relatively heavy-weight solutions
requiring extra hardware.

Proposals for Active Networks allow for computa-
tion to take place in network routers as packets are
routed to their destination. This approach could po-
tentially provide fault transparency and load balanc-
ing functionality inside of the routers. We believe
Active Networks, if widely deployed, can provide a
mechanism for implementing Smart Client function-
ality.

All of the above solutions provide a level of trans-
parent access to network services with respect to load
balancing and fault transparency. However, they are
all limited by the fact that they are divorced from
the characteristics and implementations of individ-
ual services. We observe that the greatest function-
ality and flexibility can often be provided by adding
service-specific customization to the client, rather
than service-independent functionality on the server.

3 Smart Client Architecture

In this section, we describe how the Smart Client ar-
chitecture allows for the construction of scalable ser-
vices. For the purposes of this paper, we assume the
service is implemented by a number of peer servers,
each capable of handling individual client requests1.
The key idea behind Smart Clients is the migration
of certain server functionality and state to the client
machine. This approach provides a number of advan-
tages: (i) offloading server load and decreasing imple-

1This assumption holds for many widely-used Internet services
such as HTTP, FTP, and Web searching services.



Host1 Host2

Host4Host3

Director
Applet

Client
Interface
Applet

Service
Request

Applet Reply

Applet Request

Lazy/Eager Updates

Service
Java Web Browser

Smart Client

Figure 2: This Figure describes the Smart Client service access model. Two service-specific Java applets are sup-
plied to mediate server access. The client interface applet provides the interface to the user and makes requests
of the service. The director applet is responsible for providing transparency to the client applet; it makes server
requests to the appropriate (e.g. least loaded) server, and updates its notion of server state.

mentation complexity, (ii) allowing clients to utilize
multiple peer servers distributed across the wide area
without the knowledge of individual servers, and (iii)
improving the load distribution and fault transparency
of the service as a whole.

When a user wishes to use a service, a bootstrap-
ping mechanism is used to retrieve service-specific
applets designed to access the service. Two cooper-
ating applets, a client interface applet and a direc-
tor applet, provide the interface and mask the details
of contacting individual servers respectively. Client-
side functionality is partitioned in this fashion to sep-
arate the service’s interface design from the mecha-
nisms necessary to deliver client requests to servers in
a load-balanced, fault tolerant manner.

The client interface applet is responsible for ac-
cepting user input and packaging these requests to
the director applet. The director applet encapsulates
knowledge of the service member set and the service-
specific meta-information allowing the director ap-
plet to send requests to the appropriate server. For
every user request, the Smart Client uses the direc-
tor applet to invoke a service-specific mechanism for
determining the correct destination server for the re-
quest. Figure 3 shows the interaction of the two ap-
plets in a Java-enabled Web browser. A number of is-
sues are associated with this approach: naming mech-
anisms for choosing among machines implementing
a service, procedures for receiving updates with new
information about a service (e.g., changes in load, or
the availability of a new machine), and bootstrapping
retrieval of the Smart Client applets. We will discuss

each of these issues in turn leading to a description of
the Smart Clients API.

3.1 Transparent Service Access

3.1.1 Load Balancing and Fault Transparency

We begin our discussion of the Smart Client architec-
ture by describing the techniques used to provide load
balanced and fault tolerant access to network services.
Discussion of bootstrapping the retrieval of the Smart
Client is deferred until Section 3.2. We assume that
services accessed by Smart Clients are implemented
by a number of peer servers. In other words, any
of a list of machines are capable of serving individ-
ual client requests. Thus, the director applet makes
a service-specific choice of a physical host to contact
based on an internal list of (dynamically changing)
server sites. Ideally, this choice should balance load
among servers while maximizing performance to the
end user.

While the choice of load balancing algorithm is ser-
vice specific, we enumerate a number of sample tech-
niques. The simplest approach is to randomly pick
among service providers. While this approach is sim-
ple to implemement and does not require server mod-
ifications, it can result in both poor load balancing
and poor performance to the end user. For example,
an FTP applet picking randomly among a list of ser-
vice providers may pick an under-powered mirror site
on another continent. A refinement on random load
balancing would bias future random choices based on
how quickly requests to a particular server are pro-



Request
Service

Information
Load

Result

1

3

Client Interface Applet

Service Node Set

Service Node

Pick ’Best’ Node

Request on Service
Node

Apply Service 

Director Applet

2

Figure 3: This Figure describes the Smart Client architecture. (1) The client interface applet first makes a request
to the director applet. (2) The director applet, given outside information such as load and changes to the service
group membership, picks the best node to apply the request to. The director will also re-apply the request if the
operation fails. (3) The result of the operation, including a success/failure code, is returned to the client interface
applet.

cessed. For services where multiple successive re-
quests are likely, we believe this technique should re-
sult in good performance while maintaining imple-
mentation simplicity.

Another technique involves maintaining service-
specific profiles of servers. In the FTP example
above, a description of hardware performance and
network connectivity (perhaps using techniques simi-
lar to the Internet Weather Report [Mat 1996]) may be
associated with each server. The Smart Client director
applet can then use this information to evaluate avail-
able bandwidth to each server based on the client’s
location. A further improvement requires maintain-
ing load information for each server. In this case, the
client is able to maximize performance by weighing
a combination of network connectivity, server perfor-
mance, and current server load.

The mechanisms used for load balancing can be
adapted to provide fault transparency to the end user.
Techniques such as keep-alive messages or time outs
can be utilized to determine server failure. Upon fail-
ure, the director applet can reinvoke the load balanc-
ing mechanism to choose an alternate server and reap-
ply the request. By storing all uncompleted server re-
quests and necessary client state information, the di-
rector applet can connect to an alternative site to re-
transmit all outstanding requests transparently to the

user.

3.1.2 Updating Applet State

In order to make load balancing decisions, the client
may need a reasonably current profile of the individ-
ual servers providing the service. Depending on the
application, updating the director of changes in ser-
vice state can be achieved through either lazy or eager
techniques, presenting both performance and seman-
tic tradeoffs for maintaining consistency.

Examples of eager update techniques include client
polling and server callbacks. Using client polling of
servers to maintain load information has the disad-
vantage of severely loading server machines. Server
callback techniques can be more scalable than client
polling, however they require server modifications
and increase implementation complexity. Neither
client polling nor server callbacks is likely to scale to
the level of thousands of clients necessary for some
Web services. Eager update methods are appropriate
when accurate information is required and the scale of
the service is small enough to support eager protocols.

Lazy update techniques [Ladin et al. 1992] are
likely to be more appropriate in the context of the
Web. Lazy updates reduce network traffic by sending
information only occasionally, after a number of up-



dates have been collected. One particularly attractive
mode of lazy updates is piggy-backing update infor-
mation with server replies to client requests. For ex-
ample, a server can inform Smart Client directors ap-
plets of the addition of new server machines compris-
ing the service when replying to a director request.

3.1.3 Director Architecture

Smart Clients provide a very flexible mechanism
for implementing service-specific transparency. The
Smart Client director provides the illusion of a single,
highly-available machine to the programmer of the
client interface applet. Requests made by the Smart
Client client interface applet are written to operate on
a single machine. The director applet chooses the des-
tination server based on service-specific information
such as load, availability, processor speed, or connec-
tion speed.

The director accepts arbitrary requests of the form
“perform this action on a server node”. The direc-
tor applet sends the request to the server determined
to deliver the best performance to the client. If the
request fails, the next server in the director applet’s
ranked list is contacted with the request. In this way,
the director applet provides transparent access to arbi-
trary server groups. As a result of the well-defined in-
terface between the client interface applet and the di-
rector applet (as described in Section 3.3), individual
director applets are easily interchanged for many dif-
ferent services. For example, the director applet pro-
viding transparent Telnet access to a cluster of work-
stations can also be used for services such as chat or
FTP.

3.2 Bootstrapping Applet Retrieval

The goal of transparent access to network services
would be compromised if the Smart Client applets
necessary for service access must be downloaded
from a single hostname before every service access.
We have created a scalable bootstrapping mechanism
to circumvent this single point of failure. To remove
the single point of failure associated with a single
hostname, we have modified jfox [Wendt 1996], an
existing Java Web browser, to support a new service
name space, e.g. service://now chat service. For the
service name space, the browser contacts one of many
well-known search engines with a query. These well-
known search engines serve the same purpose as the
root name servers in DNS.

Currently, the browser contacts Altavista [Dig
1995] with a query requesting an HTML page whose
title matches the service name, e.g. “now chat ser-

vice”. In this way, Smart Clients leverages highly-
available search engines to provide translations from
well-known service names to a URL. The URL points
to a page containing a service certificate. The cer-
tificate includes references to both the client interface
and director applets. In addition, the certificate con-
tains some initial guess as to service group member-
ship. This hint initializes the director applet, allowing
the applet to validate the list by contacting one of the
nodes. Figure 4 shows a certificate used for the NOW
chat service.

Jfox has been extended to cache the Smart Client
applets associated with individual services, the lo-
cation of the service certificate, the certificate itself
and any additional state that the Smart Client direc-
tor needs for the next access to the service. While
the client interface applet and service-certificate are
cached using normal browser disk caching mecha-
nisms, the director state is saved by serializing the di-
rector applet (and any relevant instance variables) to
disk using Java Object serialization [Jav 1996]. Thus,
on subsequent service accesses, the director applet
need not rely on the initial group membership con-
tained in the service certificate. Instead, it can use
the last known service group membership. With this
bootstrapping mechanism, no network communica-
tion is necessary to load the service applets after the
initial access.

Currently, the service certificate and applets are
cached indefinitely. In the future, we plan on adding
a time-out period to the server certificate. After the
timeout, the browser can revalidate both its service
certificate and the associated applets. If either the cer-
tificate or applets are inaccessible, the decision to pro-
ceed with the cached state can be made on a service-
specific basis.

Note that with the exception of bootstapping,
the implemented applets work on unmodified Java-
capable Web browsers such as Netscape Navigator
and Internet Explorer. Further, mainstream browsers
such as Internet Explorer allow for installation of fil-
ters over the entire browser [Leach 1996]. Such a fil-
ter would allow our bootstrapping mechanism to be
implemented in widely used Web browsers.

The bootstrapping problem has been addressed in
other contexts. For example, distributed applications
need access to DNS without a name server. Such
applications fall back to sending queries well-known
root name servers when it is unable to resolve a host-
name. As another example, applications which com-
municate through RPCs must bind to a server without
using an RPC. This problem is also addressed by us-
ing broadcast to initiate binding to RPC servers on the
network.



<HTML>
<TITLE>now chat service</TITLE>
<META name="description" content="now chat service">
<META name="keywords" content="now chat service">
<APPLET name="now_chat"

codebase="Chat" code="Chat.class">
<param name="director" value="now_chat_director">
</APPLET>
<APPLET name="now_chat_director"

codebase="Chat" code="ChatDirector.class">
<param name="nodes"
value="u81.cs.berkeley.edu, u82.cs.berkeley.edu, u83.cs.berkeley.edu">

</APPLET>
</HTML>

Figure 4: This example of a service certificate references both the client interface applet (Chat.class) and the direc-
tor applet (ChatDirector.class). Initial service group membership (u81,u82 and u83) is fed to the director applet for
bootstrapping purposes. The director applet contacts one of these machines to obtain group membership updates.

3.3 Smart Clients API

In this subsection, we will describe the Smart Clients
API. The goal of the API is to provide a generic in-
terface for service providers to develop transparent
access to their servers and to make it easier for pro-
grammers to implement applications for distributed
services. In the interests of brevity, we do not doc-
ument the interface in its entirety. Interested readers
can download the Java classes implementing the API
to see how the classes are used to implement a number
of sample applications (as described in Section 4).

Figure 5 presents a high-level overview of the Java
methods which make up the Smart Clients API. The
IDirector interface provides a simple abstraction
of a service to the application programmer. The pro-
grammer makes director requests through the IDirec-
tor interface. The requests are then sent by the direc-
tor applet to one of the service nodes; note that the ap-
plication programmer is not concerned with managing
server nodes. If the request fails, a director exception
is raised. In response, the director will first allow the
request to clean up any state, then resend the request to
another server. The director applet takes a best effort
approach in delivering the request. Thus, a return of
false from the delivery request indicates a catastrophic
failure of the service, i.e. all servers have failed.

4 Sample Applications

4.1 Telnet Front-End for a NOW

The NOW (Network of Workstations) Project [Ander-
son et al. 1995a] at UC Berkeley provides approx-
imately 100 workstations for use within the depart-

ment; however, it is difficult for users to know which
of the 100 machines is least loaded. To address this
problem, we developed a Web page containing a sin-
gle button which, when pressed, opens a telnet win-
dow onto the least loaded machine in the NOW clus-
ter.

The implementation of the telnet application is
straightforward. The telnet Web page encapsulates
the necessary Smart Clients applets. The director ap-
plet periodically polls the NOW’s operating system,
GLUnix [Ghormley et al. 1995], to retrieve the load
averages of machines in the cluster through a simple
Common Gateway Interface (CGI) program. When
the user clicks on the telnet button (provided by the
client interface applet), a request is sent to start a tel-
net window on the least loaded machine in the cluster.
If the director applet notices that a machine has failed
it will not submit telnet requests to that node. We
are currently investigating a fault-tolerant telnet ser-
vice which re-opens a telnet window (with saved state
such as the current working directory and environ-
ment variables) in the event of node failure. The fault-
tolerant telnet would pass this saved state through the
RequestException object (as described in Fig-
ure 5.

4.2 Scalable FTP Interface

We have also used Smart Clients to build a scalable
frontend for FTP sites. As a motivating example,
the Netscape Navigator FTP download page2 con-
tains twelve hyperlinks for netscape FTP hosts. Users
choose among netscape sites or mirrors to perform

2http://www.netscape.com/comprod/mirror-
/client download.html



// Interface to encapsulate all client interface applet requests
public interface IRequest �

// Downcall from the director to the request object. Perform the action
// on ’hostname’. Throw RequestException if an error occurs
public void action(String hostname) throws RequestException;
// Downcall from the director to the request object upon failure. Perform
// any necessary cleanup code. The state of the failed request consists
// of the ’oldhostname’ and the RequestException that was thrown from the
// action method
public void cleanup(String oldhostname, RequestException t);�

// Generic interface for all director applets
public interface IDirector �

// Execute the request r on a hostname of the director’s choosing. If the
// request object throws a RequestException, assume failure of the node
// and reapply the request after calling the request’s cleanup method.
// If there are no remaining nodes, return false. Otherwise, return true.
public boolean apply(IRequest r);�

Figure 5: This Figure describes some of the interfaces in the Smart Clients API. Classes that implement the di-
rector interface have been written to provide much of the functionality necessary to simple directors, including
randomized directors (picking a random machine) and directors based on choosing the least loaded server.

manual load balancing. To improve on this interface,
Smart Client applets present a single download but-
ton to the user. The client interface applet delivers re-
quests to the director to retrieve a file, while the di-
rector picks a machine at random from a static set of
nodes. When the user presses the button, the applet
transparently determines the best site for file retrieval.

To demonstrate the scalability available from us-
ing Smart Clients, we measure delivered bandwidth
to Smart Client applets running in Netscape Navi-
gator from a varying number of FTP servers. We
emphasize that the choice of FTP site is transpar-
ent to the end user (a single button is pressed to be-
gin file retrieval) and that our FTP application can be
downloaded to run with unmodified servers and Java-
compliant browsers. The tests were run on a cluster
of Sun Sparcstation 10’s and 20’s interconnected by a
10 Mbps Ethernet switch. The Ethernet switch allows
each machine in the cluster to simultaneously deliver
10 Mb of aggregate bandwidth to the rest of the clus-
ter without the the contention associated with shared
Ethernet networks. Either one, two, or four of the ma-
chines are designated FTP servers, while the rest of
the machines in the cluster attempt 40 consecutive re-
trievals of a 512 KB file. This experimental setup ap-
proximates multiple FTP mirror sites spread across
the wide area.

Figure 6 summarizes the results of the FTP scal-
ability tests. The graph shows aggregate delivered

bandwidth in megabytes per second as a function of
the number of client machines making simultaneous
file requests. For one FTP server, 8 clients are able
to saturate the single available Ethernet link at 1.2
MB/s3. The results for two and four FTP servers
demonstrate that the random selection of an FTP
server used within the applet delivers reasonable scal-
ability. Sixteen clients are able to retrieve approxi-
mately 2 MB/s from two servers, while 16 clients sat-
urate four servers at approximately 3 MB/s.

For small number of clients, a single FTP server
demonstrates the best performance because all 40 file
downloads are made during a single connection. For
the multi-server tests, multiple connections and dis-
connections take place as the clients attempt to ran-
domly balance load across the servers. In the fu-
ture, this problem can be avoided by implementing
site affinity with successive file requests (if deliv-
ered bandwidth on the previous was deemed satisfac-
tory), implementing a load daemon on the nodes to al-
low the clients to continuously choose lightly loaded
machines, or by using services such as the Internet
Weather Map [Mat 1996] to choose low-latency hosts.
This information can be used to incrementally scale
connections to available FTP servers (i.e. allow some
machines to be recruited only when needed).

3We were unable to take measurements for more than 16 simul-
taneous clients making requests to a single server because the FTP
server would not allow more than 16 simultaneous file retrievals.
We plan to investigate this limitation further.



0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
/s

)

�

Number of Clients

1 server
2 servers
4 servers

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
/s

)

�

Number of Clients

1 server
2 servers
4 servers

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
/s

)

�

Number of Clients

1 server
2 servers
4 servers

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
/s

)

�

Number of Clients

1 server
2 servers
4 servers

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
/s

)

�

Number of Clients

1 server
2 servers
4 servers

Figure 6: This figure demonstrates how a Smart Client interface to FTP delivers scalable performance. The graph
shows delivered aggregate bandwidth as a function of number of clients making simultaneous requests.

4.3 Scalable Chat

The next application we implement is Internet chat.
The application allows for individuals to enter and
leave chat rooms to converse with others co-located
in the same logical room. The chat application is im-
plemented as Java applets run through a Web browser.
Figure 7 depicts our implementation of the applica-
tion. Individual chat rooms are modeled as files ex-
ported through WebFS [Vahdat et al. 1996], a file sys-
tem allowing global URL read/write access. WebFS
provides for negotiation of various cache consistency
protocols on file open.

We extended WebFS to implement a scalable
caching policy suitable to the chat application. In
this model, when a user wishes to enter a chat room,
the client simply opens a well-known file associated
with the room. This operation registers the client
with WebFS. Read and write operations on the file
correspond to receiving messages from other chatters
and sending a message out to the room, respectively.
On receiving a file update (new message), WebFS
sends the update to all clients which had opened
the file for reading (i.e., all chatters in a room). In
this case, the client interface applet consists of two
threads, a read thread continuously polling the chat
file and an event thread writing user input to the chat
file. These read/write requests are sent to the chat

server via the director applet.

The director sends the request to the hostname that
represents the best service node at the time. If the re-
quest does not complete, the request raises an excep-
tion to the director applet. The director applet then
calls the service-specific cleanup routine for the re-
quest, and resends it to another service node. Note
that the request takes a service specific failure event,
such as chat file not found or WebFS server is down,
and translates it into a general exception. Thus, the di-
rector applet can be written for a cluster of machines
and reused for many different protocols: FTP, Telnet
and chat.

From the above discussion, it is clear that a sin-
gle WebFS server can quickly become a performance
bottleneck as the number of simultaneous users is
scaled. To provide system scalability, we allow multi-
ple WebFS servers to handle client requests for a sin-
gle file. Each server keeps a local copy of the chat file.
Upon receiving a client update, WebFS distributes the
updates to each of the chat clients connected to it.
WebFS also accumulates updates, and every 300 ms
propagates the updates to other servers in the WebFS
group. This caching model allows for out of order
message delivery, but we deemed such semantics to
be acceptable for a chat application. If it is determined
that such semantics are insufficient, well-known dis-



Chat

Hello!
Smart
Client

Smart
Client

Smart
Client

Smart
Client

Server1
WebFS

Server2
WebFS

Chat

>Hello!

append:
"Hello!"

Chat Chat

>Hello!>Hello!

write(http://server1/chat, "Hello!");

read(http://server1/chat, &x); read(http://server2/chat, &x);

read(http://server2/chat, &x);

Chat Server pool

Figure 7: Implementation of the chat application. Chat rooms are modeled as files with reads corresponding to
receiving conversation updates and writes to sending out a message. On a write, the WebFS updates all its clients;
the updates are propagated to other servers in a lazy fashion.

tribution techniques [Ladin et al. 1992, Birman 1993]
can be used to provide strong ordering of updates.

Since the read requests are idempotent, and the
write requests are atomic with respect to WebFS,
the chat application is completely tolerant to server
crashes. This fault transparency provides the illusion
of a single, highly-available chat server machine to
the programmer of the Chat client interface applet.
Figure 8 demonstrates the behavior of the chat appli-
cation in the face of a failure to the client’s primary
server. The graph plots response time as a function of
elapsed time. The graph shows that chat delivers less
than 5 ms latency to the end user. On detecting a fail-
ure, the latency jumps to 1 second before switching to
a secondary WebFS server, at which point the latency
returns to normal.

5 Summary

We have described a solution to the problem of scal-
ability and high-availability which logically migrates
server functionality into the client. We will now re-
visit the goals set forth in Section 1 and examine how
Smart Clients addresses each goal:

� Incremental Scalability - When a machine is
added to or removed from a service group, the di-
rector applet supplied by the service updates its
list of peer servers. The director applet discov-
ers such modifications through a service-specific
mechanism, e.g. keep-alive messages, connect-
ing to a well-known port, or refetching the ser-

vice certificate.

� Load Balancing - The director applet maintains
a service-specific notion of load (such as number
of processes, number of open connections, avail-
able bandwidth). Using this information, client
requests are routed to the best candidate node.

� Fault Transparency - When a failure occurs, the
director applet allows the client to clean up any
stale state before resending the request to another
server. Providing fault transparency requires ser-
vice support when the request is non-idempotent.
For example, in the chat application, the chat ser-
vice provides atomic writes to the chat transcript.

� Wide Area Service Topology - Smart Clients
does not place any restriction on topology of
server machines. In fact, the director applet can
choose an arbitrary site based on considerations
such as proximity or predicted performance.

� Scalable Services To Legacy Servers - Existing
servers that replicate a read-only database can
be grouped together for access by Smart Clients.
With knowledge of the group set, the director ap-
plet can load balance client requests among ex-
isting unmodified servers.

Finally, we believe that the architecture presented
in this paper can simplify implementation of scalable
services with respect to at least fault transparency and
load balancing. The Smart Client director provides
the illusion of a single, highly available server. This



1

10

100

1000

10000

0 2 10 12 14

R
ea

d 
R

es
po

ns
e 

T
im

e 
(m

ill
is

ec
on

ds
)

Switch to Server BFailure Detected

Elapsed Time (seconds)
4 6 8

1017 ms

Figure 8: Chat response times in the face of server load. The chat application delivers latencies of approximately
10 ms under normal circumstances. On server failure, the applications takes one second to switch to a peer server.

model substantially decreases the complexity of the
client interface applet since this applet need not be
concerned with maintaining the set of server nodes. In
addition, because of the public interface between the
client interface and director applets, each can be writ-
ten once and interchanged for a number of different
services.

6 Related Work

The problem of transparently providing fault trans-
parency and load balancing to network services has
been addressed previously in a number of contexts.
File systems have used server-side replication of vol-
umes and servers to provide fault transparency in
systems such as Deceit [Marzullo et al. 1990],
AFS [Howard et al. 1988], and HA-NFS [Bhide et al.
1991]. More recently, systems such as xFS [Ander-
son et al. 1995b] and Petal [Lee & Thekkath 1996]
use client-side techniques to improve overall file sys-
tem performance. Many distributed clusters perform
load balancing on the level of jobs (interactive or
otherwise) submitted to the system [Nichols 1987,
Bricker et al. 1991, Douglis & Ousterhout 1991, Zhou
et al. 1992]. Once again, all these systems implement
server-side solutions for load balancing and require
client intervention to spread jobs among cluster ma-
chines.

Perhaps most closely related to Smart Clients are
Transaction Processing monitors [Gray & Reuter

1993] (TP monitors). TP monitors provide function-
ality similar to Smart Clients for access to databases.
The TP monitor functions as the director for transac-
tions to resource managers, accounting for load on
machines, the RPC program number, and any affin-
ity between client and server. Resource managers
are usually SQL databases, but can be any server
that supports transactions. TP monitors differ from
Smart Clients in that they deal exclusively with trans-
actional RPCs as the communication mechanism to
the servers. TP monitors are also more closely cou-
pled with the server nodes since they are responsible
for starting new server processes.

The Smart Client director can be tailored to each
service, while the TP monitor is more of a general pur-
pose director. Smart Clients also provide a bootstrap-
ping mechanism to remove the single point of failure
associated with downloading the necessary routing
software. In addition, the Smart Client code is signif-
icantly more lightweight than the TP monitor which
often includes many of the features of traditional op-
erating systems: process management/creation, au-
thentication, and linking resource manager object
code with the Transaction Processing operating sys-
tem (TPOS). This lightweight nature enables Smart
Clients to be downloaded into existing Web browsers
to customize existing Internet services.

Also related to our systems are ISIS [Birman 1993]
and gossip architectures [Ladin et al. 1992] which
provide a substrate for developing distributed applica-



tions. ISIS provides reliable group communication to
support many of the applications we envision. Gos-
sip architectures use front-ends analogous to Smart
Clients to access replicated servers which are kept
consistent through lazy updates. Both systems are or-
thogonal to our work in many respects and still use
server-side techniques for much of their functionality.

7 Conclusions

In this paper, we have shown that existing solutions
to providing transparent access to network services
suffer from a lack of knowledge about the semantics
of individual services. The recent advent of Java al-
lowing distribution of portable client code presents
an opportunity to migrate certain service functional-
ity onto the client machine. We show that such mi-
gration can simplify service implementation and im-
prove the quality of service to users. To this end,
we describe our implementation of Smart Clients to
show the greater flexibility available from a client-
side approach to building scalable services. The
Smart Clients API provides a generic interface for ac-
cessing network services. Further, the decomposition
of the API into individual client interface and direc-
tor applets allows interchanging of these applets for
a variety of services. The Smart Clients API is spe-
cialized to provide scalable access to three sample ser-
vices: telnet, FTP, and Internet chat.

In the future, we will further explore service-
specific load balancing techniques for achieving scal-
ability. We also plan to demonstrate how Smart
Clients can be used to provide load balancing and
fault transparency for services replicated across the
wide area. We also plan to implement an interface
for transparent access to HTTP servers and a fault-
tolerant telnet client. Migration of other code, be-
sides the director, from the server to the client will also
be explored.

Acknowledgments

We would like to thank our shepherd Rob Gingell,
Bruce Mah, Rich Martin, and Neal Cardwell for their
help in substantially improving the presentation of
this paper. We would also like to thank Thomas Wendt
for providing the source to jfox, the Java Web browser
we modified to support Smart Clients.

References

[Anderson et al. 1995a] T. E. Anderson, D. E. Culler, D. A.

Patterson, and the NOW Team. “A Case for
NOW (Networks of Workstations)”. IEEE Mi-
cro, February 1995.

[Anderson et al. 1995b] T. E. Anderson, M. D. Dahlin,
J. M. Neefe, D. A. Patterson, D. S. Roselli, and
R. Y. Wang. “Serverless Network File Sys-
tems”. In Proceedings of the 15th ACM Sym-
posium on Operating Systems Principles, pp.
109–126, December 1995.

[Anderson et al. 1996] E. Anderson, D. Patterson, and
E. Brewer. “The Magicrouter, an Appli-
cation of Fast Packet Interposing”. May
1996. Submitted For Publication. Also see
http://HTTP.CS.Berkeley.EDU/˜eanders-
/magicrouter/.

[Berners-Lee 1995] T. Berners-Lee. “Hypertext Transfer
Protocol HTTP/1.0”, October 1995. HTTP
Working Group Internet Draft.

[Bhide et al. 1991] A. Bhide, E. N. Elnozahy, and S. P.
Morgan. “A Highly Available Network File
Server”. In Proceedings of the 1991 USENIX
Winter Conference, pp. 199–205, 1991.

[Birman 1993] K. P. Birman. “The Proecss Group Ap-
praoch to Reliable Distributed Computing”.
Communications of the ACM, 36(12):36–53,
1993.

[Bricker et al. 1991] A. Bricker, M. Litzkow, and M.
Livny. “Condor Technical Summary”. Tech-
nical Report 1069, University of Wisconsin—
Madison, Computer Science Department,
October 1991.

[Brisco 1995] T. Brisco. “DNS Support for Load Balanc-
ing”, April 1995. Network Working Group
RFC 1794.

[Dig 1995] Digital Equipment Corporation. Alta Vista,
1995. http://www.altavista.digital.com/.

[Douglis & Ousterhout 1991] F. Douglis and J. Ouster-
hout. “Transparent Process Migration: De-
sign Alternatives and the Sprite Implementa-
tion”. Software - Practice and Experience,
21(8):757–85, August 1991.

[Ghormley et al. 1995] D. Ghormley, A. Vahdat, and T.
Anderson. “GLUnix: A Global Layer UNIX
for NOW”. See http://now.cs.berkeley.edu-
/Glunix/glunix.html, 1995.

[Goldstein & Dale 1995] I. Goldstein and P. Dale. “A
Sacalable, Fault Resilient Server for the
WWW”. OSF ARPA Project Proposal, 1995.

[Gosling & McGilton 1995] J. Gosling and H. McGilton.
“The Java(tm) Language Environment: A
White Paper”. http://java.dimensionx.com-
/whitePaper/java-whitepaper-1.html, 1995.

[Gray & Reuter 1993] J. Gray and A. Reuter. Transaction
Processing: Concepts and Techniques. Mor-
gan Kaufmann, 1993.



[Howard et al. 1988] J. Howard, M. Kazar, S. Menees, D.
Nichols, M. Satyanarayanan, R. Sidebotham,
and M. West. “Scale and Performance in a
Distributed File System”. ACM Transactions
on Computer Systems, 6(1):51–82, February
1988.

[Jav 1996] JavaSoft. Java RMI Specification, Revision
1.1, 1996. See http://chatsubo.javasoft.com/-
current/doc/rmi-spec/rmiTOC.doc.html.

[Katz et al. 1994] E. D. Katz, M. Butler, and R. McGrath.
“A Scalable HTTP Server: The NCSA Proto-
type”. In First International Conference on the
World-Wide Web, April 1994.

[Ladin et al. 1992] R. Ladin, B. Liskov, L. Shirira, and
S. Ghemawat. “Providing Availability Us-
ing Lazy Replication”. ACM Transactions on
Computer Systems, 10(4):360–391, 1992.

[Leach 1996] P. Leach. Personal Communication, Novem-
ber 1996.

[Lee & Thekkath 1996] E. K. Lee and C. A. Thekkath.
“Petal: Distributed Virtual Disks”. In Pro-
ceedings of the 7th International Conference
on Architectural Support for Programming
Languages and Operating Systems, October
1996.

[Marzullo et al. 1990] K. Marzullo, K. Birman, and A.
Siegel. “Deceit: A Flexible Distributed File
System”. In Proceedings of the 1990 USENIX
Summer Conference, pp. 51–61, 1990.

[Mat 1996] Matrix Information and Directory Services,
Inc. MIDS Internet Weather Report, 1996. See
http://www2.mids.org/weather/index.html.

[Net 1994] Netscape Communications Corporation.
Netscape Navigator, 1994. http://www.-
netscape.com.

[Nichols 1987] D. Nichols. “Using Idle Workstations
in a Shared Computing Environment”. In
Proceedings of the Eleventh ACM Symposium
on Operating Systems Principles, pp. 5–12,
November 1987.

[Vahdat et al. 1996] A. Vahdat, M. Dahlin, and T. Ander-
son. “Turning the Web into a Computer”. May
1996. See http://now.cs.berkeley.edu/WebOS.

[Wendt 1996] T. Wendt. Jfox, 1996. http://www.uni-
kassel.de/fb16/ipm/mt/java/jfox.html.

[Wetherall & Tennenhouse 1995] D. Wetherall and D. L.
Tennenhouse. “Active Networks: A New Sub-
strate for Global Applications”. 1995. Submit-
ted for Publication.

[Zhou et al. 1992] S. Zhou, J. Wang, X. Zheng, and P.
Delisle. “Utopia: A Load Sharing Facility for
Large, Heterogeneous Distributed Computing
Systems”. Technical Report CSRI-257, Uni-
versity of Toronto, 1992.


