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ABSTRACT
Emerging federated computing environments offer attractive
platforms to test and deploy global-scale distributed applica-
tions. When nodes in these platforms are time-shared among
competing applications, available resources vary
across nodes and over time. Thus, one open architectural
question in such systems is how to map applications to avail-
able nodes—that is, how to discover and select resources.
Using a six-month trace of PlanetLab resource utilization
data and of resource demands from three long-running Plan-
etLab services, we quantitatively characterize resource avail-
ability and application usage behavior across nodes and over
time, and investigate the potential to mitigate the applica-
tion impact of resource variability through intelligent service
placement and migration.

We find that usage of CPU and network resources is heavy
and highly variable. We argue that this variability calls for
intelligently mapping applications to available nodes. Fur-
ther, we find that node placement decisions can become ill-
suited after about 30 minutes, suggesting that some appli-
cations can benefit from migration at that timescale, and
that placement and migration decisions can be safely based
on data collected at roughly that timescale. We find that
inter-node latency is stable and is a good predictor of avail-
able bandwidth; this observation argues for collecting la-
tency data at relatively coarse timescales and bandwidth data
at even coarser timescales, using the former to predict the
latter between measurements. Finally, we find that although
the utilization of a particular resource on a particular node
is a good predictor of that node’s utilization of that resource
in the near future, there do not exist correlations to support
predicting one resource’s availability based on availability of
other resources on the same node at the same time, on avail-
ability of the same resource on other nodes at the same site,
or on time-series forecasts that assume a daily or weekly re-
gression to the mean.

1. INTRODUCTION
Federated geographically-distributedcomputing platforms

such as PlanetLab [3] and the Grid [7, 8] have recently be-
come popular for evaluating and deploying network services
and scientific computations. As the size, reach, and user
population of such infrastructures grow, resource discovery
and resource selection become increasingly important. Al-
though a number of resource discovery and allocation ser-
vices have been built [1, 11, 15, 22, 28, 33], there is little data
on the utilization of the distributed computing platforms they

target. Yet the design and efficacy of such services depends
on the characteristics of the target platform. For example,if
resources are typically plentiful, then there is less need for
sophisticated allocation mechanisms. Similarly, if resource
availability and demands are predictable and stable, thereis
little need for aggressive monitoring.

To inform the design and implementation of emerging re-
source discovery and allocation systems, we examine the
usage characteristics of PlanetLab, a federated, time-shared
platform for “developing, deploying, and accessing” wide-
area distributed applications [3]. In particular, we investigate
variability of available host resources across nodes and over
time, how that variability interacts with resource demand of
several popular long-running services, and how careful ap-
plication placement and migration might reduce the impact
of this variability. We also investigate the feasibility ofus-
ing stale or predicted measurements to reduce overhead in a
system that automates service placement and migration.

Our study analyzes a six-month trace of node, network,
and application-level measurements. In addition to present-
ing a detailed characterization of application resource de-
mand and free and committed node resources over this time
period, we analyze this trace to address the following ques-
tions: (i) Could informed service placement—that is, using
live platform utilization data to choose where to deploy an
application—outperform a random placement? (ii) Could
migration—that is, moving deployed application instances
to different nodes in response to changes in resource availability—
potentially benefit some applications? (iii) Could we reduce
the overhead of a service placement service by using stale or
predicted data to make placement and migration decisions?
We find:

• CPU and network resource usage are heavy and highly
variable, suggesting that shared infrastructures such as
PlanetLab would benefit from a resource allocation in-
frastructure. Moreover, available resources across nodes
and resource demands across instances of an applica-
tion both vary widely. This suggests that even in the
absence of a resource allocation system, some applica-
tions could benefit from intelligently mapping applica-
tion instances to available nodes.

• Node placement decisions can become ill-suited after
about 30 minutes, suggesting that a resource discov-
ery system should not only be able to deploy appli-
cations intelligently, but should also support migrat-
ing performance-sensitive applications whose migra-
tion cost is acceptable.



• Stale data, and certain types of predicted data, can be
used effectively to reduce measurement overhead. For
example, using resource availability and utilization data
up to 30 minutes old to make migration decisions still
enables our studied applications’ resource needs to be
met more frequently than not migrating at all; this sug-
gests that a migration service for this workload need
not support a high measurement update rate. In addi-
tion, we find that inter-node latency is both stable and
a good predictor of available bandwidth; this obser-
vation argues for collecting latency data at relatively
coarse timescales and bandwidth data at even coarser
timescales, using the former to predict the latter be-
tween measurements.

• Significant variability in usage patterns across appli-
cations, combined with heavy sharing of nodes, pre-
cludes significant correlation between the availability
of different resources on the same node or at the same
site. For example, CPU availability does not corre-
spond to memory or network availability on a partic-
ular node, or to CPU availability on other nodes at
the same site. Hence, it is not possible to make ac-
curate predictions based on correlations within a node
or a site. Furthermore, because PlanetLab’s user base
is globally distributed and applications are deployed
across a globally distributed set of nodes, we note an
absence of the cyclic usage pattern typical of Inter-
net services with geographically colocated user popu-
lations. As a result, it is not possible to make accurate
resource availability or utilization predictions for this
platform based on time-series forecasts that assume a
daily or weekly regression to the mean.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our data sources and methodology. Section 3
surveys platform, node, and network resource utilization be-
havior; addresses the usefulness of informed service place-
ment; and describes resource demand models for three long-
running PlanetLab services—CoDeeN [26], Coral [10], and
OpenDHT [20]—that we use there and in subsequent sec-
tions. Section 4 investigates the potential benefits of pe-
riodically migrating service instances. Section 5 analyzes
the feasibility of making placement and migration decisions
using stale or predicted values. Section 6 discusses related
work, and in Section 7 we conclude.

2. DATA SOURCES AND METHODOLOGY
We begin by describing our measurement data sources and

PlanetLab, our target computing infrastructure. We then de-
scribe our study’s methodology and assumptions.

2.1 System environment
PlanetLab is a large-scale federated computing platform.

It consists of over 500 nodes belonging to more than 150 or-
ganizations at over 250 sites in more than 30 countries. In

general, approximately two-thirds of these nodes are func-
tioning at any one time. PlanetLab currently performs no
coordinated global scheduling, and users may deploy appli-
cations on any set of nodes at any time.

All PlanetLab nodes run identical versions of Linux on
x86 CPUs. Applications on PlanetLab run inslices. A slice
is a set of allocated resources distributed across platform
nodes. From the perspective of an application deployer, a
slice is roughly equivalent to a user in a traditional Unix
system, but with additional resource isolation and virtual-
ization [3], and with privileges on many nodes. The most
common slice usage pattern is for an application deployer to
run a single distributed application in a slice. This one-to-
one correspondence between slices and applications is true
for the applications we characterize in Section 3.2, and for
many other slices as well. The set of allocated resources on
a single node is referred to as asliver. When we discuss
“migrating a sliver,” we mean migrating the process(es) run-
ning on behalf of one slice on one node, to another node.
We study approximately six months of PlanetLab node and
network resource utilization data, from August 12, 2004 to
January 31, 2005, collected from the following data sources.
All sources periodically archive their measurements to a cen-
tral node.

CoTop[17] collects data every 5 minutes on each node. It
collects node-level information about 1-, 5-, and 15-minute
load average; free memory; and free swap space. Addition-
ally, for each sliver, CoTop collects a number of resource
usage statistics, including average send and receive network
bandwidth over the past 1 and 15 minutes, and memory and
CPU utilization. All-pairs pings[24] measures the latency
between all pairs of PlanetLab nodes every 15 minutes using
the Unix “ping” command.iPerf [5] measures the available
bandwidth between every pair of PlanetLab nodes once to
twice a week, using a bulk TCP transfer.

In this study, we focus on CPU utilization and network
bandwidth utilization. With respect to memory, we observed
that almost all PlanetLab nodes operated with their physical
memory essentially fully committed on a continuous basis,
but with a very high fraction of their 1 GB of swap space
free. In contrast, CPU and network utilization were highly
variable.

In our simulations, we use CoTop’s report of per-sliver
network utilization as a measure of the sliver’s network band-
width demand, and we assume a per-node bandwidth capac-
ity of 10 Mb/s, which was the default bandwidth limit on
PlanetLab nodes during the measurement period. We use
CoTop’s report of per-sliver %CPU utilization as a proxy for
the sliver’s CPU demand. We use1

load+1
∗ 100% to approxi-

mate the %CPU that would be available to a new application
instance deployed on a node. Thus, for example, if we wish
to deploy a sliver that needs 25% of the CPU cycles of a
PlanetLab node and 1 Mb/s of bandwidth, we say that it will
receive “sufficient” resources on any node withload <= 3
and on which competing applications are using at most a to-
tal of 9 Mb/s of bandwidth.



Note that this methodology of using observed resource uti-
lization as a surrogate for demand tends to under-estimate
true demand, due to resource competition. For example,
TCP congestion control may limit a sliver’s communication
rate when a network link the sliver is using cannot satisfy
the aggregate demand on that link. Likewise, when aggre-
gate CPU demand on a node exceeds the CPU’s capabilities,
the node’s process scheduler will limit each sliver’s CPU
usage to its “fair share.” Obtaining true demand measure-
ments would require running each application in isolation on
a cluster, subjecting it to the workload it received during the
time period we studied. Note also that the resource demand
of a particular sliver of an isolated application may change
once that application is subjected to resource competition,
even if the workload remains the same, if that competition
changes how the application distributes work among its sliv-
ers. (Only one of the applications we studied took node load
into account when assigning work; see Section 3.2.)

Finally, recent work has shown that using1

load+1
∗ 100%

to estimate the %CPU available to a new process under-
estimates actual available %CPU, as measured by an ap-
plication running just a spin-loop, by about 10 percentage
points most of the time [23]. The difference is due to Planet-
Lab’s proportional share node CPU scheduling policy, which
ensures that all processes of a particular sliver together con-
sume no more than1

m
of the CPU, wherem is the number

of slivers demanding the CPU at that time. Spin-loop CPU
availability measurements are not available for the time pe-
riod in our study.

2.2 Methodology
We take a two-pronged approach to answering the ques-

tions posed in Section 1. First we examine node-level mea-
surement data about individual resources, independent of
any application model. We then compose this data about
available node resources with simple models of application
resource demand derived from popular PlanetLab services.
This second step allows us to evaluate how space-and-time-
varying sliver resource demand interacts with space-and-time-
varying free node resources to determine the potential ben-
efits of informed sliver placement and migration, as well as
the impact of optimizations to a migration service.

We ask our questions from the perspective of a single ap-
plication at a time; that is, we assume all other applications
behave as they did in the trace. Thus, our approach com-
binesmeasurement, modeling,andsimulation, but the simu-
lation does not consider how other users might react to one
user’s placement and migration decisions. We leave to fu-
ture work developing a multi-user model that might allow
us to answer the question “if multiple PlanetLab users make
placement and migration decisions according to a particular
policy, how will the system evolve over time?”

3. DEPLOYMENT-TIME PLACEMENT
If the number of individuals wishing to deploy applica-

tions in a shared distributed platform is small, or the number

of nodes each user needs is small, a platform architect might
consider space-sharing nodes rather than time-sharing. Giv-
ing users their own dedicated set of nodes eliminates node
resource competition and thereby removes the primary mo-
tivation of informed application placement—finding lightly
utilized nodes and avoiding overutilized ones. Therefore,we
first ask whether such a space-sharing scheme is practical,
by investigating what portion of global resources application
deployers typically wish to use.

Figure 1 shows the number of PlanetLab nodes used by
each slice active during our measurement period. We say
a slice is “using” a node if the slice has at least one task
in the node’s process table (i.e., the slice has processes on
that node, but they may be running or sleeping at the time
the measurement is taken). More than half of PlanetLab
slices run on at least 50 nodes, with the top 20% operat-
ing on 250 or more nodes. This is not to say, of course, that
all of those applications “need” that many nodes to function;
for example, if a platform like PlanetLab charged users per
node they use, we expect that this distribution would shift
towards somewhat lower numbers of nodes per slice. How-
ever, we expect that a desire to maximize realism in exper-
imental evaluation, to stress-test application scalability, to
share load among nodes for improved performance, and/or
to maximize location diversity, will motivate wide-scale dis-
tribution even if such distribution comes at an economic cost.
Therefore, based on the data we collected, we conclude that
PlanetLab applicationsmusttime-share nodes, because it is
unlikely that a platform like PlanetLab would ever grow to a
size that could accommodate even a few applications each
“owning” hundreds of nodes on an ongoing basis, not to
mention allowing those large-scale applications to coexist
with multiple smaller-scale experiments. And it is this best-
effort time-sharing of node resources that leads to variable
per-node resource availability over time on PlanetLab.
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Figure 1: Cumulative distribution of nodes per slice av-
eraged over the first day of each month.

At the same time, more than 70% of slices run on less than
half of the nodes, suggesting significant flexibility in map-
ping slices to nodes. Of course, even applications that wish



to run on all platform nodes may benefit from intelligent re-
source selection, by mapping their most resource-intensive
slivers to the least utilized nodes and vice-versa.

Having argued for the necessity of time-sharing nodes,
the remainder of this section quantifies resource variability
across nodes and investigates the potential for real applica-
tions to exploit that heterogeneity by making informed node
selection decisions at deployment time. We observe signifi-
cant variability of available resources across nodes, and we
find that in simulation, a simple load-sensitive sliver place-
ment algorithm outperforms a random placement algorithm.
These observations suggest that some applications are likely
to benefit from informed placement at deployment time.

3.1 Resource heterogeneity across nodes

10th 90th
attribute mean std. dev. median %ile %ile
# of CPUs 1.0 0.0 1.0 1.0 1.0

cpu speed (MHz) 2185 642.9 2394 1263 3066
total disk (GB) 98 48 78 69 156
total mem (MB) 1184 364 1036 1028 2076
total swap (GB) 1.0 0.0 1.0 1.0 1.0

Table 1: Static node measurements on Feb 18, 2005. Sim-
ilar results were found during all other time periods as
well. PlanetLab nodes are also geographically diverse,
located in over 30 countries.
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Figure 2: CDF of node loads at three representative
moments in the trace: when load averaged across all
nodes was “typical” (median), “low” (5th percentile), and
“high” (95th percentile).

Table 1 shows that static per-node PlanetLab node charac-
teristics are fairly homogeneous across nodes. However, dy-
namic resource demands are heavy and vary over both space
and time. To quantify such variation, we consider the 5-
minute load average on all PlanetLab nodes at three instants
in our 6-month trace. These instants correspond to an instant
of low overall platform utilization, an instant of typical plat-
form utilization, and an instant of high platform utilization.
Figure 2 shows a CDF of the 5-minute load average across
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Figure 3: CDF of node 15-minute transmit bandwidths
at three representative moments in the trace: when node
transmit bandwidth averaged across all nodes was “typ-
ical” (median), “low” (5th percentile), and “high” (95th
percentile). We found similar results for 15-minute re-
ceive bandwidth.

all nodes at three separate moments in time: the time when
the load averaged across all nodes was the 5th percentile of
such averages over the entire trace (low platform utilization),
the time when the load averaged across all nodes was the the
median of such averages over the entire trace (typical plat-
form utilization), and the time when the load averaged across
all nodes was the 95th percentile of such averages over the
entire trace (high platform utilization). Analogously, Fig-
ure 3 shows a CDF of the 15-minute average transmit band-
width across all nodes at three different moments: low, typ-
ical, and high utilization of platform-wide transmit band-
width. Results for receive bandwidth were similar.

We see that load varies substantially across nodes inde-
pendent of overall system utilization, while network band-
width utilization varies substantially across nodes primarily
when the platform as a whole is using significantly higher-
than-average aggregate bandwidth. This suggests that load
is always a key metric when making application placement
decisions, whereas available per-node network bandwidth is
most important during periods of peak platform bandwidth
utilization. Note that periods of low platform bandwidth uti-
lization may be due to low aggregate application demand or
due to inability of the network to satisfy demand.

Not only per-node attributes, but also inter-node charac-
teristics, vary substantially across nodes. Figure 4 shows
significant diversity in latency and available bandwidth
among pairs of PlanetLab nodes.

Furthermore, we find that PlanetLab nodes exhibit a wide
range of MTTFs and MTTRs. Figure 5 shows MTTF and
MTTR based on “uptime” measurements recorded by nodes.
We declare that a node has failed when its uptime decreases
between two measurement intervals. We declare the node
to have failed at the time we received the last measurement
report with a monotonically increasing uptime, and to have
recovered attreport − ∆tup wheretreport is the time we re-
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Figure 4: CDF of node-pair latencies and available band-
widths over the entire trace.

ceive the measurement report indicating an uptime less than
the previous measurement report, and∆tup is the uptime
measurement in that report. Computing MTTF and MTTR
based on “all-pairs pings” data, with a node declared dead if
no other node can reach it, yields similar results. Compared
to the uptime-based approach, MTTF computed using pings
is slightly lower, reflecting situations where a node becomes
disconnected from the network but has not crashed, while
MTTR computed using pings is slightly higher, reflecting
situations in which some time passes between a node’s re-
booting and the restarting of network services.
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Figure 5: CDF of MTTF and MTTR based on “uptime.”
These curves show median availability of 88% and 95th
percentile availability of 99.7%.

These observations of substantial heterogeneity across
node and node-pair attributes suggest that there is much avail-
able resource diversity for a service placement mechanism to
exploit.

3.2 Nodes meeting application requirements
Having observed significant heterogeneity across nodes,

we now examine how that heterogeneity combines with the
resource requirements of real applications to dictate the po-

tential usefulness of informed application placement. In or-
der to do this, we first must develop models of these appli-
cations’ resource demands. In particular, we study resource
usage by three long-running PlanetLab services.

1. CoDeeN[26] is a prototype Content Distribution Net-
work. It has been operating since June 2003 and cur-
rently receives about 10 million hits per day from about
30,000 users. Over the course of the trace, CoDeeN
slivers ran on 384 unique nodes.

2. Coral [10] is another Content Distribution Network. It
has been operating since August 2004 and currently re-
ceives 10-20 million hits per day from several hundred
thousand users. Over the course of the trace, Coral
slivers ran on 337 unique nodes.

3. OpenDHT [20] is a publicly accessible distributed hash
table. OpenDHT has been operating since mid-2004.
Over the course of the trace, OpenDHT slivers ran on
406 unique nodes.

We chose these services because they are continuously-
running, utilize a large number of PlanetLab nodes, and serve
individuals outside the computer science research commu-
nity. They are therefore representative of “production” ser-
vices that aim to maximize user-perceived performance while
coexisting with other applications in a shared distributedin-
frastructure. They are also, to our knowledge, the longest-
running non-trivial PlanetLab services. Note that during the
time period of our measurement trace, these applications un-
derwent code changes that affect their resource consump-
tion. We do not distinguish changes in resource consumption
due to code upgrades from changes in resource consumption
due to workload changes or other factors, as the reason for
a change in application resource demand is not important in
addressing the questions we are investigating, only the effect
of the change on application resource demand.

We study these applications’ resource utilization over time
and across nodes to develop a loose model of the applica-
tions’ resource needs. We can then combine that model with
node-level resource data to evaluate the quality of different
mappings of slivers (application instances) to nodes. Such
an evaluation is essential to judging the potential benefit of
service placement and migration.

Figures 6, 7, and 8 show CPU demand and outgoing net-
work bandwidth for these applications over time, using a
log-scale Y-axis. Due to space constraints we show only
a subset of the six possible graphs, but all graphs displayed
similar characteristics. Each graph shows three curves, cor-
responding to the 5th percentile, median, and 95th percentile
resource demand across all slivers in the slice at each timestep.
(For example, the sliver whose resource demand is the 95th
percentile at timet may or may not be the same sliver whose
resource demand is the 95th percentile at timet + n.)

We see that a service’s resource demands vary significantly
across slivers at any given point in time. For example, all
three graphs show resource demand varying by at least an
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scale Y-axis.
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Figure 8: Transmit bandwidth demand for Coral, using
a log-scale Y-axis.

order of magnitude from the median sliver to the 95th per-
centile sliver. These results suggest that not only available
host resources, but also variable per-sliver resource demand,
must be considered when making placement decisions.

One interpretation of widely varying per-sliver demands is
that applications are performing internal load balancing,i.e.,
assigning more work to slivers running on nodes with ample
free resources. However, these three applications principally
use a hash of a request’s contents to map requests to nodes,
suggesting that variability in per-node demands is primar-
ily attributable to the application’s external workload and
overall structure, not internal load balancing. For instance,
OpenDHT performs no internal load balancing; Coral’s Dis-
tributed Sloppy Hash Table balances requests to the same
key ID but this balancing does not take into account avail-
able node resources; and CoDeeN explicitly takes node load
and reliability into account when choosing a reverse proxy
from a set of candidate proxies.

Given this understanding of the resource demands of three
large-scale applications, we can now consider the potential
benefits of informed service placement. To answer this ques-
tion, we simulate deploying anew instance of one of our
three modeled applications across PlanetLab. We assume
that the new instance’s slivers will have resource demands
identical to those of the original instance. We further as-
sume that that the new instance will use the same set of nodes
as the original, to allow for the possibility that the applica-
tion deployer intentionally avoided certain nodes for policy
reasons or because of known availability problems. Within
these constraints, we allow for any possible one-to-one map-
ping of slivers to nodes. Thus, our goal is to determine how
well a particular service placement algorithm will meet the
requirements of an application, knowing both the applica-
tion’s resource demands and available resources of the target
infrastructure.

We simulate two allocation algorithms. Therandomalgo-
rithm maps slivers to nodes randomly. Theload-sensitiveal-
gorithm deploys heavily CPU-consuming slivers onto lightly
loaded nodes and vice-versa. In both cases, each sliver’s
resource consumption is taken from the sliver resource con-
sumption measurements at the corresponding timestep in the
trace, and each node’s amount of free resources is calculated
by applying the formulas discussed in Section 2 to the node’s
load and bandwidth usage indicated at that timestep in the
trace. We then calculate, for each timestep, the fraction of
slivers whose assigned nodes have “sufficient” free CPU and
network resources for the sliver, as defined in Section 2. If
our load-sensitiveinformed service placement policy is use-
ful, then it will increase, relative to random placement, the
fraction of slivers whose resource needs are met by the nodes
onto which they are deployed. Of course, if a node does not
meet a sliver’s resource requirements, that sliver will still
function from a practical standpoint, but its performance will
be impaired.

Figures 9 and 10 show the fraction of nodes that meet ap-
plication CPU and network resource needs, treating each



timestep in the trace as a separate deployment. As Fig-
ures 2 and 3 imply, CPU was a more significant bottleneck
than node access link bandwidth. We see that the load-
sensitive placement scheme outperforms the random place-
ment scheme, increasing the number of slivers running on
nodes that meet their resource requirements by as much as
95% in the case of OpenDHT and as much as 55% in the case
of Coral (and CoDeeN, the graph of which is omitted due to
space constraints). This data argues that there is potentially
significant performance improvement to be gained by us-
ing informed service placement based on matching sliver re-
source demand to nodes with sufficient available resources,
as compared to a random assignment. A comprehensive in-
vestigation of what application characteristics make informed
node selection more beneficial or less beneficial for one ap-
plication compared to another is left to future work.
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Figure 9: Fraction of OpenDHT slivers whose resource
requirements are met by the node onto which they are
deployed, vs. deployment time.
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Figure 10: Fraction of Coral slivers whose resource re-
quirements are met by the node onto which they are de-
ployed, vs. deployment time. We note that Coral’s rel-
atively low per-sliver CPU resource demands result in a
larger fraction of its slivers’ resource demands being met
relative to OpenDHT.

4. SLIVER MIGRATION
We have seen that applications can potentially benefit from

intelligently mapping their slivers to nodes based on sliver
resource demand and available node resources. Our next
question is whether migrating slivers could improve over-
all application performance—that is, whether, and how of-
ten, to periodically recompute the mapping. While process
migration has historically proven difficult, many distributed
applications are designed to gracefully handle node failure
and recovery; for such applications, migration requires sim-
ply killing an application instance on one node and restarting
it on another node. Furthermore, emerging virtual machine
technology may enable low-overhead migration of a sliver
without resorting to exit/restart. Assuming the ability tomi-
grate slivers, we consider the potential benefits of doing so
in this section. Of course, migration is feasible only for ser-
vices that do not need to “pin” particular slivers to particular
nodes. For example, sliver location is not “pinned” in ser-
vices that map data to nodes pseudo-randomly by hashing
the contents of requests, as is the case (modulo minor im-
plementation details) for the three typical PlanetLab appli-
cations we have studied. We comment on the applicability
of these results to additional application classes in Section 7.

Before considering the potential benefits of migration, we
must first determine the typical lifetime of individual sliv-
ers. If most slivers are short-lived, then a complex migration
infrastructure is unnecessary since per-node resource avail-
ability and per-sliver resource demand are unlikely to change
significantly over very short time scales. In that case making
sliver-to-node mapping decisions only when slivers are in-
stantiated, i.e., when the application is initially deployed and
when an existing sliver dies and must be re-started, should
suffice. Figure 11 shows the average sliver lifetime for each
slice in our trace. We see that slivers are generally long-
lived: 75% of slices have average sliver lifetimes of at least
6 hours, 50% of slices have average sliver lifetimes of at least
two days, and 25% of slices have average sliver lifetimes of
at least one week. As before, we say that a sliver is “alive”
on a node if it appears in the process table for that node.

To investigate the potential usefulness of migration, we
next examine the rate of change of available node resources.
If per-node resource availability varies rapidly relativeto our
measurements of sliver lifetimes, we can hypothesize that
sliver migration may be beneficial.

4.1 Node resource variability over time
To assess the variability of per-node available resources

over time, we ask what fraction of nodes that meet a par-
ticular resource requirement at timeT continue to meet that
requirements for all time intervals betweenT andT +x, for
various values ofx and all timesT in our trace. If the frac-
tion is large, then most slivers initially deployed to nodes
meeting the requirement at timeT will find themselves con-
tinuously executing on nodes that meet the requirement until
time T + x. Conversely, if the fraction is small, then most
slivers will find the resource requirement violated at some
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Figure 11: CDF of fraction of slices vs. average sliver
lifetime for that slice. A sliver may die due to software
failure or node crash; when the sliver comes back up, we
count it as a new sliver.

time beforeT + x, suggesting that they may benefit from
migration at a time granularity on the order ofx.

Figures 12 and 13 show the fraction of nodes that meet
a particular resource requirement at timeT that continue to
meet the requirement for all time intervals betweenT and
T + x, for various values ofx, averaged over all starting
times T in our trace. The fraction of nodes that continu-
ally meet initial requirements declines rapidly with increas-
ing intervalsx, and the rate of decline increases with the
stringency of the requirement. Most importantly, we see that
the fraction of nodes continually meeting typical resource
requirements remains relatively high (80% or greater) up to
about 30 minutes post-deployment for load and up to about
60 minutes post-deployment for network traffic. This re-
sult suggests that if sliver resource requirements remain rel-
atively constant over time, then it is unnecessary to migrate
more often than every 30 to 60 minutes.

4.2 Sliver suitability to nodes over time
The suitability of a particular node to host a particular

sliver depends not only on the resources available on that
node, but also on the resource demands of that sliver over
time. We therefore perform an analysis similar to that in
the previous section, but accounting for both available node
resources and application resource demand. Here we are
interested not in the stability of available resources on in-
dividual nodes, but rather in the stability of the fraction of
slivers whose resource requirements are met after deploy-
ment. It is the rate of decline of this fraction that dictates
an appropriate migration interval for the application—very
rapid decline will require prohibitively frequent migration,
while very slow decline means migration will add little to a
simple policy of intelligent initial sliver placement and re-
deployment upon failure.

Thus, we ask what fraction of nodes onto which slivers are
deployed at timeT meet the requirements of their sliver at
timeT +x, for various values ofx. For eachT +x value, we
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Figure 12: Fraction of nodes continuously meeting vari-
ous load constraints for various durations after initially
meeting the constraint. The fraction is 100% atx = 0
because we consider only nodes that initially meet the
constraint.
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Figure 13: Fraction of nodes continuously meeting var-
ious constraints on network transmit bandwidth from
competing applications for various durations after ini-
tially meeting the constraint. The fraction is 100% at
x = 0 because we consider only nodes that initially meet
the constraint. Similar results were found for receive
bandwidth.

average this measure over every possible deployment timeT
in our trace. A large fraction means that most slivers will be
running on satisfactory hosts at the corresponding time. As
in Section 3.2, we say a node meets a sliver’s requirements
if the node has enough free CPU and network bandwidth
resources to support a new sliver assigned from the set of
sliver resource demands found at that timestep in the trace,
according to the load-sensitive or random placement policy.

Figures 14 and 15 show the fraction of slivers whose re-
source requirements were met at the time indicated on the
X-axis, under both the random and load-sensitive schemes
for initially mapping slivers to nodes at timeX = 0. Note
that the random placement line is simply a horizontal line at
the value corresponding to average across all time intervals



from Figure 9 in the case of OpenDHT and Figure 10 in the
case of Coral.

We make two primary observations from these graphs.
First, the quality of the initially load-sensitive assignment
degrades over time as node resources and sliver demands be-
come increasingly mismatched. This argues for periodic mi-
gration to re-match sliver needs and available host resources.
Second, the benefit of load-sensitive placement over random
placement—the distance between the load–sensitive and ran-
dom lines—erodes over time for the same reason, but per-
sists. This persistence suggests that informed initial place-
ment can be useful even in the absence of migration.

Choosing a desirable migration period requires balancing
the cost of migrating a particular application’s slivers against
the rate at which the application mapping’s quality declines.
For example, in OpenDHT, migration is essentially “free”
since data is stored redundantly—an OpenDHT instance can
be killed on one node and re-instantiated on another node
(and told to “own” the same DHT key range as before) with-
out causing the service to lose any data. Coral and CoDeeN
can also be migrated at low cost, as they are “soft state” ser-
vices, caching web sites hosted externally to their service.
An initially load-sensitive sliver mapping for OpenDHT has
declined to close to its asymptotic value within 30 minutes,
arguing for migrating poorly-matched slivers at that timescale
or less. If migration takes place every 30 minutes, then the
quality of the match will, on average, traverse the curve from
t = 0 to t = 30 every 30 minutes, returning tot = 0 after
each migration. Coral and CoDeeN placement quality de-
clines somewhat more quickly than OpenDHT, but migrat-
ing poorly matched slivers of these services on the order of
every 30 minutes is unlikely to cause harm and will allow the
system to maintain a somewhat better mapping than would
be achieved with a less aggressive migration interval.

A comprehensive investigation of what application char-
acteristics make migration more beneficial or less benefi-
cial for one application compared to another is left to future
work, as is emulation-based verification of our results (i.e.,
implementing informed resource selection and migration in
real PlanetLab applications, and measuring user-perceived
performance with and without those techniques under re-
peatable system conditions). Our focus in this paper is a
simulation-based analysis of whether designers of future re-
source selection systems should consider including informed
placement and migration capabilities, by showing that those
techniques are potentially beneficial for several important
applications on a popular existing platform.

5. DESIGN OPTIMIZATIONS
Our preceding experiments have assumed that resource

availability data is collected from every node every 5 min-
utes, the minimum time granularity of our trace. In a large-
scale system, it may be undesirable to collect data about ev-
ery resource attribute from all nodes that frequently. Thus,
we investigate two optimizations that a service placement
and migration service might use to reduce measurement over-
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Figure 14: Fraction of OpenDHT slivers hosted on nodes
that meet the sliver’s requirements at the time indicated
on the X-axis.
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Figure 15: Fraction of Coral slivers hosted on nodes that
meet the sliver’s requirements at the time indicated on
the X-axis. CoDeeN showed similar results.

head. First, the system might simply collect node measure-
ment data less frequently, accepting the tradeoff of reduced
accuracy. Second, it might use statistical techniques to pre-
dict resource values for one resource based on measurements
it has collected of other resource values on the same node,
resource values on other nodes, or historical resource values.

5.1 Reducing measurement frequency
In this section, we examine the impact of reducing mea-

surement frequency, first by quantifying the relative mea-
surement error resulting from relaxed data measurement in-
tervals, and then by studying the impact that stale data has
on migration decisions for our modeled applications.

5.1.1 Impact on measurement accuracy

Figures 16, 17, and 18 show the accuracy impact of re-
laxed measurement intervals for load, network transmit band-
width, and inter-node latency. For each of several update in-
tervals longer than 5 minutes, we show the fraction of nodes
(or, in the case of latency, node pairs) that incur various av-



erage absolute value errors over the course of the trace, com-
pared to updates every 5 minutes (15 minutes for latency).
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Figure 16: Mean error in 5-minute load average com-
pared to 5-minute updates.
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Figure 17: Mean error in 15-minute average network
transmit bandwidth compared to 5-minute updates.
Similar results were found for receive bandwidth.

We observe several trends from these graphs. First, la-
tency is more stable than load or network transmit band-
width. For example, if a maximum error of 20% is toler-
able, then moving from 15-minute measurements to hourly
measurements for latency will push about 12% of node pairs
out of the 20% accuracy range, but moving from 15-minute
measurements to hourly measurements for load and network
bandwidth usage will push about 50% and 55% of nodes,
respectively, out of the 20% accuracy range. Second, net-
work latency, and to a larger extent network bandwidth us-
age, show longer tails than does load. For example, with
a 30-minute update interval, only 3% of nodes show more
than 50% error in load, but over 20% of nodes show more
than 50% error in network bandwidth usage. This suggests
that bursty network behavior is more common than bursty
CPU load.

From these observations, we conclude that for most nodes,
load, network traffic, and latency data can be collected at
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Figure 18: Mean error in inter-node latency compared
to 15-minute updates.

relaxed update intervals, e.g., every 30 minutes, without in-
curring significant error. Of course, the exact amount of tol-
erable error depends on how the measurement data is be-
ing used. Further, we see that a small number of nodes
show significant burstiness with respect to network behav-
ior, suggesting that a service placement infrastructure could
maximize accuracy while minimizing overhead by separat-
ing nodes based on variability of those attributes, and using
a relaxed update rate for most nodes but a more aggressive
one for nodes with high variance.

5.1.2 Impact on placement and migration decisions

Next we investigate the impact that error resulting from
relaxed measurement intervals would have on the decisions
made by a service placement infrastructure. Figures 14 and
15 already contain the answer to this question, as there is an
analogy between acceptable migration interval and accept-
able data staleness. For example, consider collecting mea-
surements every 30 minutes. If a migration decision is made
at the same time as the data is collected, then on average the
quality of the sliver-to-node mapping will be the value of the
curve att = 0. If a migration decision is made 5 minutes
later, but using the same measurements, then the quality of
the sliver-to-node matching will be the value of the curve at
t = 5. And so on, up tot = 29. This analogy leads us
to a similar conclusion regarding stale data as we made re-
garding migration interval, namely that data staleness up to
30 minutes is acceptable for making migration decisions for
this workload.

5.2 Predicting node resources
In this section, we investigate whether we can predict the

availability of a resource on a host using values for other
resources on the same host, the same resource on other hosts,
or earlier measurements of the same resource on the same
host. If such correlations exist, a placement and migration
service can reduce measurement overhead by collecting only
a subset of the measurements that are needed, and inferring
the rest.



5.2.1 Correlation among attributes

We first investigate the correlation among attributes on the
same node. A high correlation would allow us to use the
value of one attribute on the node to predict the values of
other attributes on the node. Table 2 shows the correlation
coefficient (r) among attributes on the same node, based on
data from all nodes and all timesteps in our trace. Some-
what surprisingly, we see no strong correlations—we might
expect to see a correlation between load and network band-
width, free memory, or swap space. Instead, because each
PlanetLab node is heavily multiprogrammed, as suggested
by Figure 1, the overall resource utilization is an average
(aggregate) across many applications. A spike in resource
consumption by one application might occur at the same
time as a dip on resource consumption by another appli-
cation, leaving the net change “in the noise.” We found a
similar negative result when examining the correlation of
a single attribute across nodes at the same site (e.g., be-
tween load on pairs of nodes at the same site). While we
initially hypothesized that there may be some correlation in
the level of available resources within a site, for instance
because of user preference for some geographic or network
locality, the weakness of these same-site correlations implies
that we cannot use measurements of a resource on one node
at a site to predict values of that resource on other nodes at
the site.

r load mem swapfree bytes in bytes out
load
mem -0.04

swapfree -0.26 0.18
bytes in 0.17 -0.062 -0.20
bytes out 0.08 -0.077 0.01 0.44

Table 2: Correlation between pairs of attributes on the
same node: 15-minute load average, free memory, free
swap space, 15-minute network receive bandwidth, and
15-minute network transmit bandwidth.

One pair of potentially correlated attributes that merits
special attention is inter-node latency and bandwidth. In
general, for a given loss rate, one expects bandwidth to vary
roughly with1/latency [16]. If we empirically find a strong
correlation between latency and bandwidth, we might use la-
tency as a surrogate for bandwidth, saving substantial mea-
surement overhead.

To investigate the potential correlation, we annotated each
pairwise available bandwidth measurement collected by
Iperf with the most recently measured latency between that
pair of nodes. We graph these(latency, bandwidth) tu-
ples in Figure 19. Fitting a power law regression line, we
find a correlation coefficient of -0.59, suggesting a moder-
ate inverse power correlation. One reason why the corre-
lation is not stronger is the presence of nodes with limited
bandwidth (relative to the bulk of other nodes), such as DSL
nodes and nodes configured to limit outgoing bandwidth to
1.5 Mb/s or lower. These capacity limits artificially lower
available bandwidth below what would be predicted based

on the latency-bandwidth relationship from the dataset as a
whole. Measurements taken by nodes in this category corre-
spond to the dense rectangular region at the bottom of Fig-
ure 19 below a horizontal line at 1.5 Mb/s, where decreased
latency does not correlate to increased bandwidth.

When such nodes are removed from the regression equa-
tion computation, the correlation coefficient improves to a
strong -0.74. Viewed another way, using a regression equa-
tion derived from all nodes to predict available bandwidth
using measured latency leads to an average 233% error across
all nodes. But if known bandwidth-limited nodes are ex-
cluded when computing the regression equation, predicting
available bandwidth using measured latency leads to only an
average 36% error across the non-bandwidth-limited nodes.
Additionally, certain node pairs show even stronger latency-
bandwidth correlation. For example, 48% of node pairs have
bandwidths within 25% of the value predicted from their la-
tency. We conclude that a power-law regression equation
computed from those nodes with “unlimited” bandwidth (not
DSL or administratively limited) allows us to accurately pre-
dict available bandwidth using measured latency for the ma-
jority of those non-bandwidth-limited nodes. This in turn
allows a resource discovery system to reduce measurement
overhead by measuring bandwidth among those nodes infre-
quently (only to periodically recompute the regression equa-
tion), and to use measured latency to estimate bandwidth the
rest of the time. Of course, if the number of bandwidth-
capped nodes in PlanetLab increases, then more nodes would
have to be excluded and this correlation would become of
less value.
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Figure 19: Correlation between latency and available
bandwidth. Each point represents one end-to-end band-
width measurement and the latency measurement be-
tween the same pair of nodes taken at the closest time
to that of the bandwidth measurement.

5.2.2 Predictability over time

Finally we investigate the predictability of host resources
over time. We focus on predicting host 5-minute load av-
erage and 15-minute bandwidth average, over periods of 5
minutes and 1 hour.



The most well-known step-ahead predictors in the context
of wide-area platforms are those implemented in the Net-
work Weather Service (NWS) [29]. Although originally de-
signed to predict network characteristics, they have also been
used to predict host CPU load [31]. We consider the follow-
ing NWS predictors: last value, exponentially-
weighted moving average (EWMA), median, adaptive me-
dian, sliding window average, adaptive average, and running
average. For each prediction strategy and host, we com-
pute the average absolute value prediction error for that host
across all time intervals, and the standard deviation of the
prediction errors for that host. Table 3 shows the average
bandwidth prediction error and average load prediction error
for the median host using the three NWS techniques that per-
formed best for our dataset (last, EWMA, and median). We
also show results for a “dynamic tendency” predictor, which
predicts that a series of measurements that has been increas-
ing in the recent past will continue to increase, and a series
that has been decreasing in the recent past will continue to
decrease [31]. The 5-minute and one-hour predictors operate
identically except that the input to the one-hour predictors is
the average value over each one-hour period, while the input
to the 5-minute predictor is each individual measurement in
our trace.

We find that the “last value” predictor performs well over
time periods of an hour, confirming and extending our find-
ings from Figures 12 and 13 that load and network band-
width usage remain relatively stable over periods of an hour.
However, as we can see from Figures 2 and 3, the system un-
dergoes dramatic and unpredictable resource demand varia-
tions over longer time scales.

The “dynamic tendency” and “last value” predictors per-
form the best of all predictors we considered, for the fol-
lowing reason. All other predictors (EWMA, median, adap-
tive median, sliding window average, adaptive average, and
running average) predict that the next value will return to
the mean or median of some multi-element window of past
values. In contrast, the dynamic tendency predictor pre-
dicts that the next value will continue along the trend es-
tablished by the multi-element window of past values. The
“last value” predictor falls between these two policies: it
keeps just one element of state, predicting simply that the
next value will be the same as the last value. PlanetLab load
and network utilization values tend to show a mild tendency-
based pattern—if the load (or network utilization) on a node
has been increasing in the recent past, it will tend to continue
increasing, and vice-versa. As a result, the dynamic ten-
dency and last value predictors perform the best. Our results
resemble those in [31], which showed errors in the 10-20%
range for both last-value and dynamic tendency predictors,
in a study of loads from more traditional servers.

Analogous to using a machine’s last load value as a pre-
diction of its next load value, we might use a node’s his-
torical MTTF (MTTR) to predict its future MTTF (MTTR).
To evaluate the effectiveness of this technique, we split the
trace of node failures and recoveries that we used in Sec-

prediction 5-minute 1-hour
attribute technique prediction error prediction error

load dynamic tend. 17.8% 23.5%
load last 17.8% 23.5%
load EWMA 22.4% 30.7%
load median 24.3% 35.5%

net bw dynamic tend. 29.5% 34.6%
net bw last 29.5% 34.6%
net bw EWMA 42.7% 48.7%
net bw median 36.8% 46.2%

Table 3: 5-minute and 1-hour median per-host average
prediction error of best-performing NWS predictors and
the dynamic tendency predictor.

tion 3.1 into two halves. For each node, we calculate its
MTTF and MTTR during the first half of the trace. We pre-
dict that its MTTF (MTTR) during the second half will be
the same as its MTTF (MTTR) during the first half, and cal-
culate the percentage error that this prediction yields. Fig-
ure 20 shows a CDF of the fraction of nodes for which this
predictor yields various prediction errors. We find substan-
tial prediction error (greater than 100%) for only about 20%
of nodes, suggesting that historical node MTTF and MTTR
are reasonable criteria for ranking the quality of nodes when
considering where to deploy an application. On the other
hand, this prediction technique does not yield extremely ac-
curate predictions—for MTTF, error for the median node is
45%, and for MTTR, error for the median node is 87%.
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Figure 20: Prediction error for MTTF and MTTR.

Finally, we examine the periodicity of resource availabil-
ity. Periodicity on the time scale of human schedules is a
common form of medium-term temporal predictability. It is
often found in utilization data from servers hosting applica-
tions with human-driven workloads. For example, a web site
might see its load dip when it is nighttime in the time zones
where the majority of its users reside, or on weekends. We
therefore examined our PlanetLab traces for periodicity of
per-node load and network bandwidth usage over the course
of a day and week. We found no such periodicity for either
attribute. In fact, on average, the load or network bandwidth
on a node at timet was less closely correlated to its value at



time t + 24 hours than it was to its value at a random time
betweent andt + 24 hours. Likewise, on average, the load
or network bandwidth on a node at timet was less closely
correlated to its value at timet + 1 week than it was to its
value at a random time betweent andt + 1 week.

The lack of daily and weekly periodicity on PlanetLab can
be explained by the wide geographic distribution of applica-
tion deployers and the users of the deployed services such as
those studied earlier in this paper. Further, load on PlanetLab
tends to increase substantially around conference deadlines,
which happen on yearly timescales (beyond the granularity
of our trace) rather than daily or weekly ones. In sum, we
find that resources values are more strongly correlated over
short time periods than over medium or long-term ones.

6. RELATED WORK
The measurement aspects of this paper add to a growing

literature on measurements of resource utilization in Internet-
scale systems. Most of this work has focused on network-
level measurements, a small subset of which we mention
here. Balakrishnan examines throughput stability to many
hosts from the vantage point of the 1996 Olympic Games
web server [2], while Zhang collects data from 31 pairs of
hosts [34]. Chen describes how to monitor a subset of paths
to estimate loss rate and latency on all other paths in a net-
work [6] . Wolski [29] and Vazhkudai [25] focus on predict-
ing wide-area network resources.

Growing interest in shared computational Grids has led
to several recent studies of node-level resource utilization in
such multi-user systems. Foster describes resource utiliza-
tion on Grid3 [8], while Yang describes techniques to pre-
dict available host resources to improve resource schedul-
ing [31, 32]. Harchol-Balter investigates process migration
for dynamic load-balancing in networks of Unix worksta-
tions [12], and cluster load balancing is an area of study with
a rich literature. Compared to these earlier studies, our paper
represents the first study of resource utilization and service
placement issues for a federated platform as heavily shared
and utilized as PlanetLab.

Several recent papers have used measurement data from
PlanetLab. Yalagandula investigates correlated node fail-
ure; correlations between MTTF, MTTR, and availability;
and predictability of TTF, TTR, MTTF, and MTTR [30].
Rhea measures substantial variability over time and across
nodes in the amount of time to complete CPU, disk, and net-
work microbenchmarks; these findings corroborate our ob-
servations in Section 3.1 [19]. Rhea advocates application-
internal mechanisms, as opposed to intelligent application
placement, to counter node heterogeneity. Lastly, Spring
uses measurements of CPU and node availability to dispel
various “myths” about PlanetLab [23].

Resource discovery tools are a prerequisite for automated
service placement and migration. CoMon [18], CoTop [17],
and Ganglia [14] collect node-level resource utilization data
on a centralized server, while MDS [33], SWORD [15], and
XenoSearch [22] provide facilities to query such data to make

placement and migration decisions.
Shared wide-area platforms themselves are growing in num-

ber and variety. PlanetLab focuses on network services [3],
Grid3 focuses on large-scale scientific computation [8], Fu-
tureGrid aims to support both “eScience” and network ser-
vice applications [7], and BOINC allows home computer
users to multiplex their machines’ spare resources among
multiple public-resource computing projects [4]. Ripeanu
compares resource management strategies on PlanetLab to
those used in the Globus Grid toolkit [21].

7. CONCLUSIONS AND FUTURE WORK
Resource competition is a fact of life when time-shared

distributed platforms attract a substantial number of users. In
this paper, we argued that careful application placement and
migration are promising techniques to help mitigate the im-
pact of resource variability resulting from this competition.
We also studied techniques to reduce measurement overhead
for a placement and migration system, including using stale
or predicted data.

Resource selection and application migration techniques
complement the application-specific techniques that some
distributed services employ internally to balance load or to
select latency-minimizing network paths. Those techniques
optimize application performance given the set of nodes al-
ready supporting the application, and generally only con-
sider the application’s own workload and structure as op-
posed to resource constraints due to competing applications.
In contrast, this paper focused onwhere to deploy—and pos-
sibly re-deploy—application instancesbased on information
about application resource demand and available node and
network resources. Once an application’s instances have
been mapped to physical nodes, application-internal mecha-
nisms can then be used on finer timescales to optimize per-
formance. In general, application-internal load balancing,
external service placement, or a combination of the two can
be used to match application instance to available nodes based
on resource demand and resources offered.

We expect our observations on placement and migration
to generalize to other applications built on top of location-
independent data storage; the commonalities we observed
among CoDeeN, Coral, and Bamboo, all of which use re-
quest hashing in one form or another to determine where
data objects are stored, provide initial evidence to support
such an expectation. Given the popularity of content-based
routing and storage as organizing principles for emerging
wide-area distributed systems, this application pattern will
likely remain pervasive in the near future. A major class
of distributed application generally not built in this way is
monitoring applications. A monitoring system could store
its data in a hash-based storage system running on a subset
of platform nodes, making its behavior similar to the appli-
cations we examined in this paper (indeed the SWORD sys-
tem [15] does exactly that). But another common pattern for
these applications is to couple workload to location, storing
monitoring data at the node where it is produced and set-



ting up an overlay or direct network connections as needed
to route data from nodes of interest to the node that issues
a monitoring query [13, 27]. In such systems migration is
not feasible. Likewise, data-intensive scientific applications
that analyze data collected by a high-bandwidth instrument
(e.g., a particle accelerator) may wish to couple processing
to the location where the data is produced, in which case mi-
gration is not feasible. On the other hand, emerging “data
grids” that enable cross-site data sharing and federation may
reduce this location dependence for some scientific applica-
tions, thereby make computation migration more feasible for
data-intensive scientific applications in the future.

PlanetLab is the largest public, shared distributed plat-
form in terms of number of users and sites. Thus, we be-
lieve that the platform-specific conclusions we have drawn
in this paper can extrapolate to future time-shared distributed
platform used for developing and deploying wide-area ap-
plications that allow users to deploy their applications onas
many nodes as they wish and to freely migrate those appli-
cation instances when desired. A platform with cost-based
or performance-based disincentives to resource consumption
would likely result in smaller-scale deployments and more
careful resource usage, butvariability in resource utiliza-
tion across nodes and over time should persist, in which case
the usefulness of matching (and re-matching) application re-
source demand to node resource availability would too.

On the other hand, our “black-box” view of background
platform utilization means our results cannot be easily ex-
trapolated to environments that perform global resource schedul-
ing (e.g., all application deployers submit their jobs to a cen-
tralized scheduler that makes deployment and migration de-
cisions in a coordinated way), or in which multiple applica-
tions make simultaneous placement and migration decisions.
Detailed simulation of platform-wide scheduling policies,
and the aggregate behavior that emerges from systems with
multiple interacting per-application scheduling policies, are
challenging topics for future work. Nonetheless, our anal-
ysis methodology represents a starting point for evaluating
more complex system models and additional placement and
migration strategies. As future PlanetLab-like systems such
as GENI [9] come online, and as wide-area Grid systems
become more widely used, examining how well these results
extrapolate to other environments and application classeswill
become key research questions.
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