Service Placement in a Shared Wide-Area Platform

David Oppenheimer!, Brent Chun?, David Patterson?, Alex C. Snoeren', and Amin Vahdat!
1UC San Diego?Arched Rock CorporatiortUC Berkeley
{doppenhe,snoeren,vahd@cs.ucsd.edu, bnc@theether.org, pattrsn@cs.berkeley.e

ABSTRACT target. Yet the design and efficacy of such services depends
on the characteristics of the target platform. For exaniple,

platforms to test and deploy global-scale distributediappl ~ '€SOUrces are typically plentiful, then there is less need f
tions. When nodes in these platforms are time-shared amoripPhisticated allocation mechanisms. Similarly, if reseu
competing applications, available resources vary availability and demands are predictable and stable, ikere
across nodes and over time. Thus, one open architecturkitl® need for aggressive monitoring. _
question in such systems is how to map applications to avail- 1° inform the design and implementation of emerging re-
able nodes—that is, how to discover and select resourceSoUrce discovery and allocation systems, we examine the
Using a six-month trace of PlanetLab resource utilization!Sa3€ characteristics of PlanetLab, a federated, timessha

data and of resource demands from three long-running Plafatform for “developing, deploying, and accessing” wide-
etLab services, we quantitatively characterize resourait-a ~ 2réa distributed applications [3]. In particular, we irtigate

ability and application usage behavior across nodes and ov¥2riability of available host resources across nodes aed ov
time, and investigate the potential to mitigate the applicat'me’ how that variability interacts with resource demahd o

tion impact of resource variability through intelligentgee ~ S€Veral popular long-running services, and how careful ap-
placement and migration. plication placement and migration might reduce the impact

We find that usage of CPU and network resources is heav9f this variability: We also investigate the feasibility o$- _
and highly variable. We argue that this variability calls fo "9 Stale or predicted measurements to reduce overhead in a
intelligently mapping applications to available nodesr-Fu SYStém thatautomates service placement and migration.
ther, we find that node placement decisions can become ill- OUr study analyzes a six-month trace of node, network,
suited after about 30 minutes, suggesting that some appld @pplication-level measurements. In addition to presen
cations can benefit from migration at that timescale, and"9 @ detailed characterization of application resource de

that placement and migration decisions can be safely basdgand and free and committed node resources over this time

on data collected at roughly that timescale. We find tha{:?eriod, we analyze this trace to address the following ques-

inter-node latency is stable and is a good predictor of availlions: (i) Could informed service placement—that is, using
able bandwidth; this observation argues for collecting laive Platform utilization data to choose where to deploy an
tency data at relatively coarse timescales and bandwidsh da@PPlication—outperform a random placement? (i) Could
at even coarser timescales, using the former to predict th@igration—that is, moving deployed application instances

latter between measurements. Finally, we find that althougff differentnodesin response to changes in resource bilityla-
the utilization of a particular resource on a particular@od Potentially benefit some applications? (iii) Could we reeluc

is a good predictor of that node’s utilization of that resmmur the overhead of a service placement service by using stale or
in the near future, there do not exist correlations to supporPredicted data to make placement and migration decisions?

predicting one resource’s availability based on avaiigtif We find:

other resources on the same node at the same time, on avail- ¢ CPU and network resource usage are heavy and highly
ability of the same resource on other nodes at the same site, variable, suggesting that shared infrastructures such as
or on time-series forecasts that assume a daily or weekly re- pjanetLab would benefit from a resource allocation in-

Emerging federated computing environments offer ativacti

gression to the mean. frastructure. Moreover, available resources across nodes
and resource demands across instances of an applica-
1. INTRODUCTION tion both vary widely. This suggests that even in the

absence of a resource allocation system, some applica-
tions could benefit from intelligently mapping applica-
tion instances to available nodes.

Federated geographically-distributed computing platfor
such as PlanetLab [3] and the Grid [7, 8] have recently be-
come popular for evaluating and deploying network services
and scientific computations. As the size, reach, and user e Node placement decisions can become ill-suited after

population of such infrastructures grow, resource disgpove about 30 minutes, suggesting that a resource discov-
and resource selection become increasingly important. Al- ery system should not only be able to deploy appli-
though a number of resource discovery and allocation ser- cations intelligently, but should also support migrat-
vices have been built[1, 11, 15, 22, 28, 33], there is litdéad ing performance-sensitive applications whose migra-

on the utilization of the distributed computing platforrey tion cost is acceptable.

e Stale data, and certain types of predicted data, can bgeneral, approximately two-thirds of these nodes are func-
used effectively to reduce measurement overhead. Fdioning at any one time. PlanetLab currently performs no
example, using resource availability and utilization datacoordinated global scheduling, and users may deploy appli-
up to 30 minutes old to make migration decisions still cations on any set of nodes at any time.
enables our studied applications’ resource needs to be All PlanetLab nodes run identical versions of Linux on
met more frequently than not migrating at all; this sug-x86 CPUs. Applications on PlanetLab runslices A slice
gests that a migration service for this workload needis a set of allocated resources distributed across platform
not support a high measurement update rate. In addirodes. From the perspective of an application deployer, a
tion, we find that inter-node latency is both stable andslice is roughly equivalent to a user in a traditional Unix
a good predictor of available bandwidth; this obser-system, but with additional resource isolation and virtual
vation argues for collecting latency data at relativelyization [3], and with privileges on many nodes. The most
coarse timescales and bandwidth data at even coarseommon slice usage pattern is for an application deployer to
timescales, using the former to predict the latter be+un a single distributed application in a slice. This one-to
tween measurements. one correspondence between slices and applications is true

for the applications we characterize in Section 3.2, and for

e Significant variability in usage patterns across appli-many other slices as well. The set of allocated resources on
cations, combined with heavy sharing of nodes, pre-a single node is referred to asshver. When we discuss
cludes significant correlation between the availability“migrating a sliver,” we mean migrating the process(es) run
of different resources on the same node or at the samging on behalf of one slice on one node, to another node.
site. For example, CPU availability does not corre-We study approximately six months of PlanetLab node and
spond to memory or network availability on a partic- network resource utilization data, from August 12, 2004 to
ular node, or to CPU availability on other nodes at January 31, 2005, collected from the following data sources
the same site. Hence, it is not possible to make acAll sources periodically archive their measurements taa ce
curate predictions based on correlations within a noderal node.
or a site. Furthermore, because PlanetLab’s user base CoTop[17] collects data every 5 minutes on each node. It
is globally distributed and applications are deployedcollects node-level information about 1-, 5-, and 15-ménut
across a globally distributed set of nodes, we note anoad average; free memory; and free swap space. Addition-
absence of the cyclic usage pattern typical of Inter-ally, for each sliver, CoTop collects a number of resource
net services with geographically colocated user popuusage statistics, including average send and receive retwo
lations. As a result, it is not possible to make accuratebandwidth over the past 1 and 15 minutes, and memory and
resource availability or utilization predictions for this CPU utilization. All-pairs pings[24] measures the latency
platform based on time-series forecasts that assumelgetween all pairs of PlanetLab nodes every 15 minutes using
daily or weekly regression to the mean. the Unix “ping” commandiPerf [5] measures the available

bandwidth between every pair of PlanetLab nodes once to

The remainder of this paper is organized as follows. Sectwice a week, using a bulk TCP transfer.

tion 2 describes our data sources and methodology. Section 3In this study, we focus on CPU utilization and network
surveys platform, node, and network resource utilizatien b bandwidth utilization. With respect to memory, we observed
havior; addresses the usefulness of informed service placehat almost all PlanetLab nodes operated with their physica
ment; and describes resource demand models for three longremory essentially fully committed on a continuous basis,
running PlanetLab services—CoDeeN [26], Coral [10], andout with a very high fraction of their 1 GB of swap space
OpenDHT [20]—that we use there and in subsequent sedree. In contrast, CPU and network utilization were highly
tions. Section 4 investigates the potential benefits of pevariable.
riodically migrating service instances. Section 5 anadyze |n our simulations, we use CoTop’s report of per-sliver
the feasibility of making placement and migration decision network utilization as a measure of the sliver’s networkdban
using stale or predicted values. Section 6 discusses delatgvidth demand, and we assume a per-node bandwidth capac-
work, and in Section 7 we conclude. ity of 10 Mb/s, which was the default bandwidth limit on

PlanetLab nodes during the measurement period. We use
2. DATASOURCESAND METHODOLOGY CoTop’s report of per-sliver %CPU utilization as a proxy for
rt}lae sliver's CPU demand. We u% * 100% to appro_xi— .
mate the %CPU that would be available to a new application
instance deployed on a node. Thus, for example, if we wish
to deploy a sliver that needs 25% of the CPU cycles of a
2.1 System environment PlanetLab node and 1 Mb/s of bandwidth, we say that it will

receive “sufficient” resources on any node witlhd <= 3

PlanetLab is a large-scale federated computing platformy, o which competing applications are using at most a to-
It consists of over 500 nodes belonging to more than 150 0fg,| ot 9 Mb/s of bandwidth.

ganizations at over 250 sites in more than 30 countries. In

We begin by describing our measurement data sources a
PlanetLab, our target computing infrastructure. We then de
scribe our study’s methodology and assumptions.

Note that this methodology of using observed resource utief nodes each user needs is small, a platform architect might
lization as a surrogate for demand tends to under-estimatonsider space-sharing nodes rather than time-sharing. Gi
true demand, due to resource competition. For exampléng users their own dedicated set of nodes eliminates node
TCP congestion control may limit a sliver's communication resource competition and thereby removes the primary mo-
rate when a network link the sliver is using cannot satisfytivation of informed application placement—finding lightl
the aggregate demand on that link. Likewise, when aggreutilized nodes and avoiding overutilized ones. Therefaee,
gate CPU demand on a node exceeds the CPU’s capabilitiefirst ask whether such a space-sharing scheme is practical,
the node’s process scheduler will limit each sliver's CPUby investigating what portion of global resources appiaat
usage to its “fair share.” Obtaining true demand measuredeployers typically wish to use.
ments would require running each applicationin isolation o Figure 1 shows the number of PlanetLab nodes used by
a cluster, subjecting it to the workload it received duringt each slice active during our measurement period. We say
time period we studied. Note also that the resource demandal slice is “using” a node if the slice has at least one task
of a particular sliver of an isolated application may changean the node’s process table (i.e., the slice has processes on
once that application is subjected to resource competitiorthat node, but they may be running or sleeping at the time
even if the workload remains the same, if that competitionthe measurement is taken). More than half of PlanetLab
changes how the application distributes work among its slivslices run on at least 50 nodes, with the top 20% operat-
ers. (Only one of the applications we studied took node loadnhg on 250 or more nodes. This is not to say, of course, that
into account when assigning work; see Section 3.2.) all of those applications “need” that many nodes to fungtion

Finally, recent work has shown that usi:lq(gil—+1 x 100% for example, if a platform like PlanetLab charged users per
to estimate the %CPU available to a new process undenode they use, we expect that this distribution would shift
estimates actual available %CPU, as measured by an appwards somewhat lower numbers of nodes per slice. How-
plication running just a spin-loop, by about 10 percentageever, we expect that a desire to maximize realism in exper-
points most of the time [23]. The difference is due to Planetimental evaluation, to stress-test application scalgbito
Lab’s proportional share node CPU scheduling policy, whichshare load among nodes for improved performance, and/or
ensures that all processes of a particular sliver together ¢ to maximize location diversity, will motivate wide-scalis4d
sume no more thalg}n— of the CPU, wherem is the number tribution even if such distribution comes at an economi¢.cos
of slivers demanding the CPU at that time. Spin-loop CPUTherefore, based on the data we collected, we conclude that
availability measurements are not available for the time pePlanetLab applicationsiusttime-share nodes, because it is

riod in our study. unlikely that a platform like PlanetLab would ever grow to a
size that could accommodate even a few applications each
2.2 Methodology “owning” hundreds of nodes on an ongoing basis, not to

We take a two-pronged approach to answering the quegnention allowing those large-scale applications to cdexis
tions posed in Section 1. First we examine node-level meawith multiple smaller-scale experiments. And it is thistees
surement data about individual resources, independent @iffort time-sharing of node resources that leads to vagiabl
any application model. We then compose this data abouger-node resource availability over time on PlanetLab.
available node resources with simple models of application

resource demand derived from popular PlanetLab services. 1 T ‘ —F &
This second step allows us to evaluate how space-and-time- X 00112104 e %@@\(D ﬁéﬁ *ﬁ'@%

. . . . ¥ _ i) =) K
varying sliver resource demand interacts with space-ane-t osl E'@é 104 x%*i*'** ’}}:‘_ . |

varying free node resources to determine the potential ben-
efits of informed sliver placement and migration, as well as
the impact of optimizations to a migration service.

We ask our questions from the perspective of a single ap-
plication at a time; that is, we assume all other application
behave as they did in the trace. Thus, our approach com-
binesmeasurement, modelingndsimulation but the simu-
lation does not consider how other users might react to one
user’s placement and migration decisions. We leave to fu-
ture work developing a multi-user model that might allow % 0 100 150 20 20 00 35
us to answer the question “if multiple PlanetLab users make Number of Nodes per Slice

placement and migration decisions according to a particulagig re 1: Cumulative distribution of nodes per slice av-
policy, how will the system evolve over time?” eraged over the first day of each month.

3. DEPLOYMENT-TIME PLACEMENT At the same time, more than 70% of slices run on less than

If the number of individuals wishing to deploy applica- half of the nodes, suggesting significant flexibility in map-
tions in a shared distributed platform is small, or the numbeping slices to nodes. Of course, even applications that wish

L Y
9 i g,,l A

0.6

04 g

Cumulative Fraction of Slices

0.2

to run on all platform nodes may benefit from intelligent re-
source selection, by mapping their most resource-intensiv
slivers to the least utilized nodes and vice-versa.

Having argued for the necessity of time-sharing nodes,
the remainder of this section quantifies resource vartgbili
across nodes and investigates the potential for real applic
tions to exploit that heterogeneity by making informed node
selection decisions at deployment time. We observe signifi-
cant variability of available resources across nodes, aad w
find that in simulation, a simple load-sensitive sliver glac
ment algorithm outperforms a random placement algorithm.
These observations suggest that some applications ake like
to benefit from informed placement at deployment time.

Cumulative Fraction of Nodes

5th percentile average tx Mb/s
50th percentile average tx Mb/s
95th pgrcentile average tx Mb/s

2 3 4 5
15-Minute Average Transmit Mb/s

3.1 Resource heterogeneity across nodes Figure 3: CDF of node 15-minute transmit bandwidths

at three representative moments in the trace: when node

10th | 90th . . “
attribute mean | std. dev. | median | %ile | %ile transmit bandwidth averaged across all nodes was “typ-
#of CPUS 1.0 0.0 1.0 10 | 1.0 ical” (median), “low” (5th percentile), and “high” (95th
cpu speed (MHz)| 2185 | 642.9 2394 | 1263 | 3066 percentile). We found similar results for 15-minute re-
total disk (GB) 98 48 78 69 156 ceive bandwidth.
total mem (MB) | 1184 364 1036 | 1028 | 2076
total swap (GB) | 1.0 0.0 1.0 1.0 1.0

all nodes at three separate moments in time: the time when
the load averaged across all nodes was the 5th percentile of
such averages over the entire trace (low platform utilizgti

the time when the load averaged across all nodes was the the
median of such averages over the entire trace (typical plat-
form utilization), and the time when the load averaged acros
all nodes was the 95th percentile of such averages over the
.......... e T entire trace (high platform utilization). Analogously,gFi

ure 3 shows a CDF of the 15-minute average transmit band-
width across all nodes at three different moments: low, typ-
ical, and high utilization of platform-wide transmit band-
width. Results for receive bandwidth were similar.

We see that load varies substantially across nodes inde-
pendent of overall system utilization, while network band-
width utilization varies substantially across nodes priipa
when the platform as a whole is using significantly higher-

_ than-average aggregate bandwidth. This suggests that load
5th percentile average load X) X) -
50th percentile average load is always a key metric when making application placement
95th percentile average load

s " 5 decisions, whereas available per-node network bandwsdth i

5-Minute Load Average most important during periods of peak platform bandwidth
utilization. Note that periods of low platform bandwidth-ut

Figure 2: CDF of node loads at three representative |ization may be due to low aggregate application demand or

moments in the trace: when load averaged across all duye to inability of the network to satisfy demand.

nodes was “typical” (median), “low” (5th percentile), and Not only per-node attributes, but also inter-node charac-

“high” (95th percentile). teristics, vary substantially across nodes. Figure 4 shows
significant diversity in latency and available bandwidth

Table 1 shows that static per-node PlanetLab node charaamong pairs of PlanetLab nodes.
teristics are fairly homogeneous across nodes. However, dy Furthermore, we find that PlanetLab nodes exhibit a wide
namic resource demands are heavy and vary over both spange of MTTFs and MTTRs. Figure 5 shows MTTF and
and time. To quantify such variation, we consider the 5-MTTR based on “uptime” measurements recorded by nodes.
minute load average on all PlanetLab nodes at three instan®e declare that a node has failed when its uptime decreases
in our 6-month trace. These instants correspond to an instabetween two measurement intervals. We declare the node
of low overall platform utilization, an instant of typicalgs- to have failed at the time we received the last measurement
form utilization, and an instant of high platform utilizati. ~ report with a monotonically increasing uptime, and to have
Figure 2 shows a CDF of the 5-minute load average acrosecovered at,cport — Atyp Wheret, .ot is the time we re-

Table 1: Static node measurements on Feb 18, 2005. Sim-
ilar results were found during all other time periods as
well. PlanetLab nodes are also geographically diverse,
located in over 30 countries.

Cumulative Fraction of Nodes

Average Inter-node Latency (ms)

tential usefulness of informed application placement.rin o
0 100 200 300 400 500 600 700 800 900 1000 1100
1 T T T T T T

Catoney der to do this, we first must develop models of these appli-
— Bandwidth cations’ resource demands. In particular, we study resourc
08| usage by three long-running PlanetLab services.

07t
0.6
05
04t
03/
0.2
01 j,»"' 2. Coral [10] is another Content Distribution Network. It

: has been operating since August 2004 and currently re-
ceives 10-20 million hits per day from several hundred

thousand users. Over the course of the trace, Coral
Figure 4: CDF of node-pair latencies and available band- slivers ran on 337 unique nodes.

widths over the entire trace.

1. CoDeeN[26] is a prototype Content Distribution Net-
work. It has been operating since June 2003 and cur-
rently receives about 10 million hits per day from about
30,000 users. Over the course of the trace, CoDeeN
slivers ran on 384 unique nodes.

Cumulative Fraction of Node Pairs

0 % L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Average Available Bandwidth (kb/s)

3. OpenDHT [20]is a publicly accessible distributed hash
table. OpenDHT has been operating since mid-2004.
Over the course of the trace, OpenDHT slivers ran on
406 unigue nodes.

ceive the measurement report indicating an uptime less than
the previous measurement report, afvd,, is the uptime
measurement in that report. Computing MTTF and MTTR
based on “all-pairs pings” data, with a node declared dead if We chose these services because they are continuously-
no other node can reach it, yields similar results. Comparegunning, utilize a large number of PlanetLab nodes, andserv
to the uptime-based approach, MTTF computed using pingidividuals outside the computer science research commu-
is slightly lower, reflecting situations where a node beceme nity. They are therefore representative of “production se
disconnected from the network but has not crashed, whilgices that aim to maximize user-perceived performanceavhil
MTTR computed using pings is slightly higher, reflecting coexisting with other applications in a shared distributed
situations in which some time passes between a node’s rérastructure. They are also, to our knowledge, the longest-
booting and the restarting of network services. running non-trivial PlanetLab services. Note that durimg t
time period of our measurement trace, these applications un
derwent code changes that affect their resource consump-
tion. We do not distinguish changes in resource consumption
due to code upgrades from changes in resource consumption
due to workload changes or other factors, as the reason for
a change in application resource demand is not importantin
addressing the questions we are investigating, only tleeeff

of the change on application resource demand.

We study these applications’ resource utilization oveetim
and across nodes to develop a loose model of the applica-
tions’ resource needs. We can then combine that model with
node-level resource data to evaluate the quality of differe
2 ‘ ‘ mappings of slivers (application instances) to nodes. Such

0.8

0.6

04 r

Cumulative Fraction of Nodes

02 r

01 ! 10 o 100 1000 10000 an evaluation is essential to judging the potential benéfit o
service placement and migration.
Figure 5: CDF of MTTF and MTTR based on “uptime.” Figures 6, 7, and 8 show CPU demand and outgoing net-
These curves show median availability of 88% and 95th work bandwidth for these applications over time, using a
percentile availability of 99.7%. log-scale Y-axis. Due to space constraints we show only

a subset of the six possible graphs, but all graphs displayed
These observations of substantial heterogeneity across similar characteristics. Each graph shows three curves, co
node and node-pair attributes suggest that there is mudh avaesponding to the 5th percentile, median, and 95th peteenti
able resource diversity for a service placement mechamism resource demand across all slivers in the slice at eachtémes
exploit. (For example, the sliver whose resource demand is the 95th
. .. . percentile at time¢ may or may not be the same sliver whose
3.2 Nodes meeting application requirements resource demand is the 95th percentile at timen.)
Having observed significant heterogeneity across nodes, We see that a service’s resource demands vary significantly
we now examine how that heterogeneity combines with thecross slivers at any given point in time. For example, all
resource requirements of real applications to dictate the p three graphs show resource demand varying by at least an

%CPU

0.1

0.01

* medi;

= 95th percentile
n

~ 5th percentile

i
§

¢
o
2}
o

ik o x F

0001 L— 1
0 30

60

90

120

150

August 12, 2004 to January 31, 2005 (Days)

Figure 6: CPU resource demand for OpenDHT, using a

log-scale Y-axis.

180

%CPU

0.01

@

centile

.miic‘

i

0.001
0

60

90

120

150

August 12, 2004 to January 31, 2005 (Days)

Figure 7: CPU resource demand for Coral, using a log-

scale Y-axis.

10000

180

1000

[N
o
S

Send Bandwidth (Kbit/s)

%
%
h
i
i
i
i
i
i

- §5th pej
median
+ 5th perc

i
i
i
I
I
[
|
T
i
i
i

rcentile

’entile‘

¥
i

0.1
0 30

60

90

120

150

August 12, 2004 to January 31, 2005 (Days)

Figure 8: Transmit bandwidth demand for Coral,

a log-scale Y-axis.

180

using

order of magnitude from the median sliver to the 95th per-
centile sliver. These results suggest that not only aviailab
host resources, but also variable per-sliver resource déma
must be considered when making placement decisions.

One interpretation of widely varying per-sliver demands is
that applications are performing internal load balancireg,
assigning more work to slivers running on nodes with ample
free resources. However, these three applications pafigip
use a hash of a request’s contents to map requests to nodes,
suggesting that variability in per-node demands is primar-
ily attributable to the application’s external workloaddan
overall structure, not internal load balancing. For ins&@an
OpenDHT performs no internal load balancing; Coral’s Dis-
tributed Sloppy Hash Table balances requests to the same
key ID but this balancing does not take into account avail-
able node resources; and CoDeeN explicitly takes node load
and reliability into account when choosing a reverse proxy
from a set of candidate proxies.

Given this understanding of the resource demands of three
large-scale applications, we can now consider the potentia
benefits of informed service placement. To answer this ques-
tion, we simulate deploying aew instance of one of our
three modeled applications across PlanetLab. We assume
that the new instance’s slivers will have resource demands
identical to those of the original instance. We further as-
sume that that the new instance will use the same set of nodes
as the original, to allow for the possibility that the applic
tion deployer intentionally avoided certain nodes for ppli
reasons or because of known availability problems. Within
these constraints, we allow for any possible one-to-one map
ping of slivers to nodes. Thus, our goal is to determine how
well a particular service placement algorithm will meet the
requirements of an application, knowing both the applica-
tion’s resource demands and available resources of thettarg
infrastructure.

We simulate two allocation algorithms. Trendomalgo-
rithm maps slivers to nodes randomly. Tibad-sensitival-
gorithm deploys heavily CPU-consuming slivers onto lightl
loaded nodes and vice-versa. In both cases, each sliver's
resource consumption is taken from the sliver resource con-
sumption measurements at the corresponding timestep in the
trace, and each node’s amount of free resources is caldulate
by applying the formulas discussed in Section 2 to the node’s
load and bandwidth usage indicated at that timestep in the
trace. We then calculate, for each timestep, the fraction of
slivers whose assigned nodes have “sufficient” free CPU and
network resources for the sliver, as defined in Section 2. If
ourload-sensitivéenformed service placement policy is use-
ful, then it will increase, relative to random placemeng th
fraction of slivers whose resource needs are met by the nodes
onto which they are deployed. Of course, if a node does not
meet a sliver's resource requirements, that sliver will sti
function from a practical standpoint, but its performandé w
be impaired.

Figures 9 and 10 show the fraction of nodes that meet ap-
plication CPU and network resource needs, treating each

timestep in the trace as a separate deployment. As Figd. SLIVER MIGRATION

ures 2 and 3 imply, CPU was a more significant bottleneck \ye have seen that applications can potentially benefit from
than node access link bandwidth. We see that the loadgjigently mapping their slivers to nodes based on slive
sensitive placement scheme outperforms the random plac@ssoyrce demand and available node resources. Our next
ment scheme, increasing the number of slivers running ogestion is whether migrating slivers could improve over-

node; that meet their resource requirements by as much af application performance—that is, whether, and how of-
95% in the case of OpenDHT and as much as 55%in the casgy, g periodically recompute the mapping. While process

of Coral (and CoDeeN, the graph of which is omitted due t0gration has historically proven difficult, many distried
space constraints). This data argues that there is pdtgntia applications are designed to gracefully handle node failur

significant performance improvement to be gained by USyq recovery: for such applications, migration requires si

ing informed service placement based on matching sliver '€y killing an application instance on one node and restgrti

source demand to nodes with sufficient available resource$ on another node. Furthermore emerging virtual machine

as compared to a random assignment. A comprehensive ijscpnology may enable low-overhead migration of a sliver
vestigation of what application characteristics makenmied \,ith ot resorting to exit/restart. Assuming the abilitynb
n(_)de_selectlon more benef|C|aI_ or less beneficial for one apgrate slivers, we consider the potential benefits of doing so
plication compared to another is left to future work. in this section. Of course, migration is feasible only farse
vices that do not need to “pin” particular slivers to parlau
nodes. For example, sliver location is not “pinned” in ser-
vices that map data to nodes pseudo-randomly by hashing
the contents of requests, as is the case (modulo minor im-
plementation details) for the three typical PlanetLab appl
cations we have studied. We comment on the applicability
of these results to additional application classes in 8eati
Before considering the potential benefits of migration, we
must first determine the typical lifetime of individual sliv
ers. If most slivers are short-lived, then a complex migrati
infrastructure is unnecessary since per-node resourdle ava

1

08
06 |

0.4 r

02

Fraction of slivers with sufficient resources

- load-sensitive placement ili _ali H
. | ‘ | fantiom placement ability and per-sliver resource demand are unlikely to gean
0 20 60 % 120 150 S|gn|f|cantly over very short time scales. Inthat case rrgikl_n
August 12, 2004 to January 31, 2005 (Days) sliver-to-node mapping decisions only when slivers are in-

stantiated, i.e., when the application is initially depddyand
when an existing sliver dies and must be re-started, should
suffice. Figure 11 shows the average sliver lifetime for each
slice in our trace. We see that slivers are generally long-
lived: 75% of slices have average sliver lifetimes of atieas
6 hours, 50% of slices have average sliver lifetimes of atlea
two days, and 25% of slices have average sliver lifetimes of
at least one week. As before, we say that a sliver is “alive”
on a node if it appears in the process table for that node.

To investigate the potential usefulness of migration, we
next examine the rate of change of available node resources.
If per-node resource availability varies rapidly relativeour
04t 1 measurements of sliver lifetimes, we can hypothesize that
sliver migration may be beneficial.

Figure 9: Fraction of OpenDHT slivers whose resource
requirements are met by the node onto which they are
deployed, vs. deployment time.

L et e e v
S # y Fth ARk]
A **vj"'&"* SR

¥

0.8

06

02 r

Fraction of slivers with sufficient resources

3 4.1 Node resource variability over time
oo load-sensitive placement

0 ‘ P random placement To assess the variability of per-node available resources
0 30 60 % 120 150 over time, we ask what fraction of nodes that meet a par-
August 12,2004 0 Janary 31, 2005 (D2ys) ticular resource requirement at tirffecontinue to meet that
Figure 10: Fraction of Coral slivers whose resource re- requirements for all time intervals betwe€rand7” + «, for
guirements are met by the node onto which they are de- various values of and all timesT in our trace. If the frac-
ployed, vs. deployment time. We note that Coral’s rel- tion is large, then most slivers initially deployed to nodes
atively low per-sliver CPU resource demands resultin a meeting the requirement at tinfléwill find themselves con-
larger fraction of its slivers’ resource demands being met tinuously executing on nodes that meet the requiremerit unti
relative to OpenDHT. time T + x. Conversely, if the fraction is small, then most
slivers will find the resource requirement violated at some

" S =
0 * load <=4
<o oad <=3

N load <=2 |

08 JRE load <=1

0.6

0.4 r

Cumulative Fraction of Slices
Fraction of Nodes

02

01¢f

L L L L L L L L L
0 100 200 300 400 500 600 700 800 0 1 2 3 4 5 6 7 8
Average Lifetime of Slivers (Hours) Hours

Figure 11: CDF of fraction of slices vs. average sliver Figure 12: Fraction of nodes continuously meeting vari-

lifetime for that slice. A sliver may die due to software ous load constraints for various durations after initially

failure or node crash; when the sliver comes back up, we meeting the constraint. The fraction is 100% atx = 0

count it as a new sliver. because we consider only nodes that initially meet the
constraint.

time beforeT + z, suggesting that they may benefit from
migration at a time granularity on the orderaf

Figures 12 and 13 show the fraction of nodes that meet
a particular resource requirement at tiffiehat continue to
meet the requirement for all time intervals betwéermand
T + =z, for various values of;, averaged over all starting
times T in our trace. The fraction of nodes that continu-
ally meet initial requirements declines rapidly with inase
ing intervalsz, and the rate of decline increases with the
stringency of the requirement. Most importantly, we se¢ tha
the fraction of nodes continually meeting typical resource
requirements remains relatively high (80% or greater) up to

—— tx15 <= 600 kbis
—— tx15 <= 400 kb/s
tx15 <= 0 kb/s

0.8

06

04 r

Fraction of Nodes

02 r

about 30 minutes post-deployment for load and up to about ° T . 5 a4
60 minutes post-deployment for network traffic. This re- Hours
sult suggests that if sliver resource requirements rengdin r
atively constant over time, then it is unnecessary to mégrat
more often than every 30 to 60 minutes.

Figure 13: Fraction of nodes continuously meeting var-
ious constraints on network transmit bandwidth from
competing applications for various durations after ini-
4.2 Sliver suitability to nodes over time tially meeting the constraint. The fraction is 100% at

The suitability of a particular node to host a particular® — 0 because we consider only nodes that initially meet

sliver depends not only on the resources available on thi’{:ae constraint. Similar results were found for receive

node, but also on the resource demands of that sliver ov ndwidth.
time. We therefore perform an analysis similar to that in
the previous section, but accounting for both availableenod average this measure over every possible deploymentfime
resources and application resource demand. Here we aieour trace. A large fraction means that most slivers will be
interested not in the stability of available resources on inrunning on satisfactory hosts at the corresponding time. As
dividual nodes, but rather in the stability of the fractidn o in Section 3.2, we say a node meets a sliver’'s requirements
slivers whose resource requirements are met after deployf the node has enough free CPU and network bandwidth
ment. It is the rate of decline of this fraction that dictatesresources to support a new sliver assigned from the set of
an appropriate migration interval for the application—wer sliver resource demands found at that timestep in the trace,
rapid decline will require prohibitively frequent migrati, according to the load-sensitive or random placement policy
while very slow decline means migration will add little to a Figures 14 and 15 show the fraction of slivers whose re-
simple policy of intelligent initial sliver placement and-r source requirements were met at the time indicated on the
deployment upon failure. X-axis, under both the random and load-sensitive schemes
Thus, we ask what fraction of nodes onto which slivers ardor initially mapping slivers to nodes at timg = 0. Note
deployed at tim&” meet the requirements of their sliver at that the random placement line is simply a horizontal line at
time T+, for various values af. For eacti’+ x value, we the value corresponding to average across all time interval

from Figure 9 in the case of OpenDHT and Figure 10 in the 1
case of Coral.

We make two primary observations from these graphs. 08 \\E‘_ﬁ‘
First, the quality of the initially load-sensitive assigant
degrades over time as node resources and sliver demands be-
come increasingly mismatched. This argues for periodic mi- 081
gration to re-match sliver needs and available host ressurc
Second, the benefit of load-sensitive placement over random
placement—the distance between the load—sensitive and ran
dom lines—erodes over time for the same reason, but per-
sists. This persistence suggests that informed initiaigala

0.4 r

02

Fraction of slivers w/ sufficient resources

. . . — load-sensitive placement
ment can be useful even in the absence of migration. 0 ‘ Lo random placement
Choosing a desirable migration period requires balancing 0 10 20 3 4 5 60 70

the cost of migrating a particular application’s sliversizagt Time since deployment (minutes)

the rate at which the application mapping’s quality dedline Figure 14: Fraction of OpenDHT slivers hosted on nodes

For example, in OpenDHT, migration is essentially “free” that meet the sliver's requirements at the time indicated
since data is stored redundantly—an OpenDHT instance cagn the X-axis.

be killed on one node and re-instantiated on another node

(and told to “own” the same DHT key range as before) with- 1
out causing the service to lose any data. Coral and CoDeeN
can also be migrated at low cost, as they are “soft state” ser-
vices, caching web sites hosted externally to their service
An initially load-sensitive sliver mapping for OpenDHT has
declined to close to its asymptotic value within 30 minutes,
arguing for migrating poorly-matched slivers at that ticede

or less. If migration takes place every 30 minutes, then the
quality of the match will, on average, traverse the curveifro

t = 0tot = 30 every 30 minutes, returning to= 0 after
each migration. Coral and CoDeeN placement quality de- L load-sensitive placement
clines somewhat more quickly than OpenDHT, but migrat- ‘ e random placement
ing poorly matched slivers of these services on the order of 0 0 20 3 40 50 60 70
every 30 minutes is unlikely to cause harm and will allow the Time since deployment (minutes)

system to maintain a somewhat better mapping than woulgtigure 15: Fraction of Coral slivers hosted on nodes that

be achieved with a less aggressive migration interval. meet the sliver's requirements at the time indicated on
A comprehensive investigation of what application char-the X-axis. CoDeeN showed similar results.

acteristics make migration more beneficial or less benefi-
cial for one application compared to another is left to fatur
work, as is emulation-based verification of our results,(i.e

0.8 r

0.6

0.4 r

02

Fraction of slivers w/ sufficient resources

head. First, the system might simply collect node measure-

implementing informed resource selection and migration ifnent data less frequently, accepting the tradeoff of reduce

real PlanetLab applications, and measuring user-pemteiveaccuracy' Second, it might use statistical techniquesde pr

performance with and without those techniques under regICt resource values for one resource based on measurements

peatable system conditions). Our focus in this paper is 4 has collected of other resource vallues. on the same node,
simulation-based analysis of whether designers of futewe r '€SOUrce values on other nodes, or historical resourcesalu
source selection systems should consider including inddrm 5 1 Reducing measurement frequency

placement and migration capabilities, by showing thatehos
techniques are potentially beneficial for several impdrtan

applications on a popular existing platform.

In this section, we examine the impact of reducing mea-
surement frequency, first by quantifying the relative mea-
surement error resulting from relaxed data measurement in-
tervals, and then by studying the impact that stale data has
5. DESIGN OPTIMIZATIONS on migration decisions for our modeled applications.

Our preceding experiments have assumed that resource
availability data is collected from every node every 5 min- >-1-1 Impact on measurementaccuracy
utes, the minimum time granularity of our trace. In a large- Figures 16, 17, and 18 show the accuracy impact of re-
scale system, it may be undesirable to collect data about eVaxed measurementintervals for load, network transmitlban
ery resource attribute from all nodes that frequently. Thuswidth, and inter-node latency. For each of several update in
we investigate two optimizations that a service placementervals longer than 5 minutes, we show the fraction of nodes
and migration service might use to reduce measurement ovgor, in the case of latency, node pairs) that incur various av

erage absolute value errors over the course of the trace, com 1
pared to updates every 5 minutes (15 minutes for latency). 09 .

1

0.8 r

0.4 r b

Cumulative Fraction of Node Pairs
o
[}
T

[%]

(o

°

2

kS

S 03k — 30 min updates |

3] . —x— 1 hour updates

g 02 —— 2 hour updates |

° : — 4 hour updates

2 04r T — 8 hour updates

k5 0.1 —e— 16 hour updates T

g 10 min updates o ‘ ‘ , —*—, 32hourupdates

3 —x— 15 min updates

O 02 20 min updates | 0 20 40 60 80 100 120
—e— 25 min updates % error

— 30 min updates
—— 60 mip updates

0 20 40 60 80 100 120
% error

Figure 18: Mean error in inter-node latency compared
to 15-minute updates.

Figure 16: Mean error in 5-minute load average com-

pared to 5-minute updates relaxed update intervals, e.g., every 30 minutes, without i

curring significant error. Of course, the exact amount of tol

erable error depends on how the measurement data is be-
1 ing used. Further, we see that a small humber of nodes

5 e show significant burstiness with respect to network behav-

ior, suggesting that a service placement infrastructuaédco
maximize accuracy while minimizing overhead by separat-
ing nodes based on variability of those attributes, andgusin
a relaxed update rate for most nodes but a more aggressive
one for nodes with high variance.

0.8 r

04
5.1.2 Impact on placement and migration decisions

10 min updates

Cumulative Fraction of Nodes

02 L o Jomin ﬂggg}gg, Next we investigate the impact that error resulting from
—e— Z5mn ﬂggg{gg relaxed measurement intervals would have on the decisions
o LELE ‘ _ —o— 60 min updates made by a service placement infrastructure. Figures 14 and
0 20 40 60 80 100 120 15 already contain the answer to this question, as there is an
% error analogy between acceptable migration interval and accept-

Figure 17: Mean error in 15-minute average network able data staleness. For example, consider collecting mea-

transmit bandwidth compared to 5-minute updates. surements every 30 minutes. If a migration decision is made
Similar results were found for receive bandwidth. at the same time as the data is collected, then on average the

quality of the sliver-to-node mapping will be the value of th
We observe several trends from these graphs. First, lecurve att = 0. If a migration decision is made 5 minutes
tency is more stable than load or network transmit bandiater, but using the same measurements, then the quality of
width. For example, if a maximum error of 20% is toler- the sliver-to-node matching will be the value of the curve at
able, then moving from 15-minute measurements to hourly = 5. And so on, up t& = 29. This analogy leads us
measurements for latency will push about 12% of node pairgo a similar conclusion regarding stale data as we made re-
out of the 20% accuracy range, but moving from 15-minutegarding migration interval, namely that data stalenessoup t
measurements to hourly measurements for load and netwoB0 minutes is acceptable for making migration decisions for
bandwidth usage will push about 50% and 55% of nodesthis workload.
respectively, out of the 20% accuracy range. Second, neg .
work latency, and to a larger extent network bandwidth us- .2 Predicting node resources
age, show longer tails than does load. For example, with In this section, we investigate whether we can predict the
a 30-minute update interval, only 3% of nodes show morevailability of a resource on a host using values for other
than 50% error in load, but over 20% of nodes show moregesources on the same host, the same resource on other hosts,
than 50% error in network bandwidth usage. This suggestsr earlier measurements of the same resource on the same
that bursty network behavior is more common than burstyhost. If such correlations exist, a placement and migration
CPU load. service can reduce measurement overhead by collecting only
From these observations, we conclude that for most nodes, subset of the measurements that are needed, and inferring
load, network traffic, and latency data can be collected athe rest.

5.2.1 Correlation among attributes on the latency-bandwidth relationship from the dataset as a

We first investigate the correlation among attributes on thévhole. Measurements taken by nodes in this category corre-
same node. A high correlation would allow us to use theSPONd to the dense rectangular region at the bottom of Fig-
value of one attribute on the node to predict the values of'r€ 19 below a horizontal line at 1.5 Mb/s, where decreased
other attributes on the node. Table 2 shows the correlatiolR{€Ncy does not correlate to increased bandwidth.
coefficient (r) among attributes on the same node, based on "When such nodes are removed from the regression equa-
data from all nodes and all timesteps in our trace. Somelion computation, the correlation coefficient improves to a

using a regression equa-

what surprisingly, we see no strong correlations—we mighSrong -0.74. Viewed another way,

expect to see a correlation between load and network band©n derived from all nodes to predict available bandwidth
width, free memory, or swap space. Instead, because eadsing measured latency leads to an average 233% error across
PlanetLab node is heavily multiprogrammed, as suggeste@l! nedes. But if known bandwidth-limited nodes are ex-

by Figure 1, the overall resource utilization is an averagé!uded when computing the regression equation, predicting

(aggregate) across many applications. A spike in resourcavailable bandwidth using measured latency leads to only an

consumption by one application might occur at the samé&verage 36% error across th_e non-bandwidth-limited nodes.
certain node pairs show even stronger lagenc

time as a dip on resource consumption by another applifdditionally, _ _
cation, leaving the net change “in the noise.” We found ghandwidth correlation. For example, 48% of node pairs have
5% of the value predicted from their la-

similar negative result when examining the correlation of@ndwidths within 2 (:
a single attribute across nodes at the same site (e.g., biENCY- We conclude that a power-law regression equation

tween load on pairs of nodes at the same site). While w&omputed from those nodes with “unlimited” bandwidth (not

initially hypothesized that there may be some correlation i PSL or administratively limited) allows us to accuratelgpr
the level of available resources within a site, for instanceliCt available bandwidth using measured latency for the ma-

because of user preference for some geographic or netwolRM Y Of those non-bandwidth-limited nodes. This in turn
locality, the weakness of these same-site correlationkamp 2/l0Ws a resource discovery system to reduce measurement
that we cannot use measurements of a resource on one nogiéerhead by measuring bandwidth among those nodes infre-

at a site to predict values of that resource on other nodes gH€ntly (only to periodically recompute the regressiorzequ
tion), and to use measured latency to estimate bandwidth the

the site. ! - :
rest of the time. Of course, if the number of bandwidth-
[r [load | mem [swapfree] bytesin | bytesout | capped nodes in PlanetLab increases, then more nodes would
r'f?:gq oy have to be excluded and this correlation would become of

swapfree | -0.26 | 0.18 less value.

bytesin | 0.17 | -0.062| -0.20

bytesout | 0.08 | -0.077 0.01 0.44 1200
Table 2: Correlation between pairs of attributes on the 10000 §
same node: 15-minute load average, free memory, free Py

. . . Y

swap space, 15-minute network receive bandwidth, and 8000 |4

15-minute network transmit bandwidth.

Bandwidth (kb/s)

One pair of potentially correlated attributes that merits
special attention is inter-node latency and bandwidth. In
general, for a given loss rate, one expects bandwidth to vary
roughly with1/latency [16]. If we empirically find a strong
correlation between latency and bandwidth, we might use la-
tency as a surrogate for bandwidth, saving substantial mea-
surement overhead. Latency (ms)

To investigate the potential correlation, we annotatetieaCrigure 19: Correlation between latency and available
pairWise available bandwidth measurement collected by bandwidth. Each point represents one end-to-end band-
Iperf with the most recently measured |atency between thakndth measurement and the |atency measurement be-
pair of nodes. We graph theséutency, bandwidth) tu- tween the same pair of nodes taken at the closest time

ples in Figure 19. Fitting a power law regression line, wetg that of the bandwidth measurement.
find a correlation coefficient of -0.59, suggesting a moder-

ate inverse power correlation. One reason why the corre- . - .

lation is not stronger is the presence of nodes with Iimited5'2'2 Predictability over time

bandwidth (relative to the bulk of other nodes), such as DSL Finally we investigate the predictability of host resowwrce
nodes and nodes configured to limit outgoing bandwidth taover time. We focus on predicting host 5-minute load av-
1.5 Mb/s or lower. These capacity limits artificially lower erage and 15-minute bandwidth average, over periods of 5
available bandwidth below what would be predicted basedninutes and 1 hour.

4000

The most well-known step-ahead predictors in the context| preciction 5-minute 1-hour
. . . attribute technique prediction error | prediction error
of wide-area platforms are those implemented in the Net- .

. . load dynamic tend. 17.8% 23.5%
work Weather_Serwce (NWS) [29]. _AI_though originally de- load fast 17.8% >3.504
signed to predict network characteristics, they have asmb load EWMA 22.0% 30.7%
used to predict host CPU load [31]. We consider the follow- 'Otag . me‘?'at” . gggf;’ ging’
. . . . net ow ynamic tend. .070 6%
mg_NWS pred|.ctors. last value, exponentlglly- _ et bw st 59 5%% 06%
weighted moving average (EWMA), median, adaptive me- [etbw EWNA 227% 28.7%
dian, sliding window average, adaptive average, and rgnnin | netbw median 36.8% 46.2%

average. For each prediction strategy and host, we com-) _

pute the average absolute value prediction error for thsit hoTabIE_’ 3 5-minute and 1-hour _medu’;m per-hqst average
across all time intervals, and the standard deviation of th@rediction error of best-perfprmmg NWS predictors and
prediction errors for that host. Table 3 shows the averagie dynamic tendency predictor.

bandwidth prediction error and average load predictioorerr

for the median host using the three NWS techniques that PeHon 3.1 into two halves. For each node, we calculate its

formed best for our dataset (last, EWMA, and median). WeITTF and MTTR during the first half of the trace. We pre-

also show results for a “dynamic tendency” predictor, WhichdiCt that its MTTF (MTTR) during the second half will be
predicts that a series of measurements that has been increﬁe same as its MTTF (MTTR) during the first half, and cal-
ing in the recent past V\.”” cpntmue to increase, and a SeMEE late the percentage error that this prediction yieldg- Fi
that has been decreaS|_ng in the recent past W'_” continue Q.0 54 shows a CDF of the fraction of nodes for which this
_(iljecrte_as”e [31]. TT?hS-tTrl]nu_te ar;(tzl iﬂe-hourﬁ redlcto(rf Ct@erabredictor yields various prediction errors. We find substan
\aentically except inat the Input o the one-hour predsisr -, prediction error (greater than 100%) for only about 20%
the average value over eaph one—_hogr_penod, while the 'anbtf nodes, suggesting that historical node MTTF and MTTR
to the 5-minute predictor is each individual measurement re reasonable criteria for ranking the quality of nodesrwhe
ou\;\/trafped that the “last value” predict ; I considering where to deploy an application. On the other
e findhat the ast value “predictor pertorms Well OV oy this prediction technique does not yield extremely ac

time periods of an hour, confirming and extending our finOl'curate predictions—for MTTF, error for the median node is
ings from Figures 12 and 13 that load and network bandas%, and for MTTR, error for the median node is 87%.

width usage remain relatively stable over periods of an.hour
However, as we can see from Figures 2 and 3, the system un-
dergoes dramatic and unpredictable resource demand varia-
tions over longer time scales. R
The “dynamic tendency” and “last value” predictors per- 08¢ -
form the best of all predictors we considered, for the fol-
lowing reason. All other predictors (EWMA, median, adap-
tive median, sliding window average, adaptive average, and
running average) predict that the next value will return to
the mean or median of some multi-element window of past
values. In contrast, the dynamic tendency predictor pre-
dicts that the next value will continue along the trend es-
tablished by the multi-element window of past values. The T Mre
“last value” predictor falls between these two policies: it o =0 100 150 200 250 300 380 400
keeps just one element of state, predicting simply that the Percent Change
next value will be the same as the last value. PlanetLab load
and network utilization values tend to show a mild tendency-
based pattern—if the load (or network utilization) on a node) o o
has been increasing in the recent past, it will tend to coetin _ Finally, we examine the periodicity of resource availabil-
increasing, and vice-versa. As a result, the dynamic tenly: Periodicity on the time scale of human schedules is a
dency and last value predictors perform the best. Our gesul€omMmon form of medium-term temporal predictability. Itis
resemble those in [31], which showed errors in the 10-2004ften found in utilization data from servers hosting applic

range for both last-value and dynamic tendency predictordions with human-driven workloads. For example, a web site
in a study of loads from more traditional servers. might see its load dip when it is nighttime in the time zones
Analogous to using a machine’s last load value as a preWhere the majority of its users reside, or on weekends. We

diction of its next load value, we might use a node’s his-therefore examined our PlanetLab traces for periodicity of

torical MTTF (MTTR) to predict its future MTTF (MTTR). per-node load and network bandwidth usage over the course
To evaluate the effectiveness of this technique, we speit th Of @ day and week. We found no such periodicity for either

trace of node failures and recoveries that we used in Se@tribute. In fact, on average, the load or network bandwidt
on a node at timéwas less closely correlated to its value at

0.6

0.4 r

Cumulative Fraction of Nodes

02

Figure 20: Prediction error for MTTF and MTTR.

time ¢ + 24 hours than it was to its value at a random time placement and migration decisions.

betweent and¢ + 24 hours. Likewise, on average, the load Shared wide-area platforms themselves are growing in num-

or network bandwidth on a node at timavas less closely ber and variety. PlanetLab focuses on network services [3],

correlated to its value at time+ 1 week than it was to its Grid3 focuses on large-scale scientific computation [8}, Fu

value at a random time betweeandt + 1 week. tureGrid aims to support both “eScience” and network ser-
The lack of daily and weekly periodicity on PlanetLab canvice applications [7], and BOINC allows home computer

be explained by the wide geographic distribution of applica users to multiplex their machines’ spare resources among

tion deployers and the users of the deployed services such asultiple public-resource computing projects [4]. Ripeanu

those studied earlier in this paper. Further, load on Plaatet compares resource management strategies on PlanetLab to

tends to increase substantially around conference desdlin those used in the Globus Grid toolkit [21].

which happen on yearly timescales (beyond the granularity

of our trace) rather than daily or weekly ones. In sum, we7 CONCLUSIONS AND EUTURE WORK

find that resources values are more strongly correlated over

short time periods than over medium or long-term ones. Resource competition is a fact of life when time-shared

distributed platforms attract a substantial number ofsiSer
this paper, we argued that careful application placemet an
6. RELATED WORK migration are promising techniques to help mitigate the im-
The measurement aspects of this paper add to a growingact of resource variability resulting from this compeiiti
literature on measurements of resource utilization inrhe ~ We also studied techniques to reduce measurement overhead
scale systems. Most of this work has focused on networkfor a placement and migration system, including using stale
level measurements, a small subset of which we mentioor predicted data.
here. Balakrishnan examines throughput stability to many Resource selection and application migration techniques
hosts from the vantage point of the 1996 Olympic Gamesomplement the application-specific techniques that some
web server [2], while Zhang collects data from 31 pairs ofdistributed services employ internally to balance loadoor t
hosts [34]. Chen describes how to monitor a subset of pathselect latency-minimizing network paths. Those techréque
to estimate loss rate and latency on all other paths in a netptimize application performance given the set of nodes al-
work [6] . Wolski [29] and Vazhkudai [25] focus on predict- ready supporting the application, and generally only con-
ing wide-area network resources. sider the application’s own workload and structure as op-
Growing interest in shared computational Grids has lecposed to resource constraints due to competing application
to several recent studies of node-level resource utibmdati In contrast, this paper focused where to deploy—and pos-
such multi-user systems. Foster describes resourceadtiliz sibly re-deploy—application instancbased on information
tion on Grid3 [8], while Yang describes techniques to pre-about application resource demand and available node and
dict available host resources to improve resource scheduihetwork resources. Once an application’s instances have
ing [31, 32]. Harchol-Balter investigates process migmati been mapped to physical nodes, application-internal mecha
for dynamic load-balancing in networks of Unix worksta- nisms can then be used on finer timescales to optimize per-
tions [12], and cluster load balancing is an area of studly wit formance. In general, application-internal load balaggcin
arich literature. Compared to these earlier studies, opepa external service placement, or a combination of the two can
represents the first study of resource utilization and servi be used to match application instance to available nodeslbas
placement issues for a federated platform as heavily sharezh resource demand and resources offered.
and utilized as PlanetLab. We expect our observations on placement and migration
Several recent papers have used measurement data framgeneralize to other applications built on top of location
PlanetLab. Yalagandula investigates correlated node failindependent data storage; the commonalities we observed
ure; correlations between MTTF, MTTR, and availability; among CoDeeN, Coral, and Bamboo, all of which use re-
and predictability of TTF, TTR, MTTF, and MTTR [30]. quest hashing in one form or another to determine where
Rhea measures substantial variability over time and acros$ata objects are stored, provide initial evidence to suppor
nodes in the amount of time to complete CPU, disk, and netsuch an expectation. Given the popularity of content-based
work microbenchmarks; these findings corroborate our obrouting and storage as organizing principles for emerging
servations in Section 3.1 [19]. Rhea advocates applicationwide-area distributed systems, this application patteith w
internal mechanisms, as opposed to intelligent applinatio likely remain pervasive in the near future. A major class
placement, to counter node heterogeneity. Lastly, Springf distributed application generally not built in this wag i
uses measurements of CPU and node availability to dispehonitoring applications. A monitoring system could store
various “myths” about PlanetLab [23]. its data in a hash-based storage system running on a subset
Resource discovery tools are a prerequisite for automateaf platform nodes, making its behavior similar to the appli-
service placement and migration. CoMon [18], CoTop [17],cations we examined in this paper (indeed the SWORD sys-
and Ganglia [14] collect node-level resource utilizatiated tem [15] does exactly that). But another common pattern for
on a centralized server, while MDS [33], SWORD [15], andthese applications is to couple workload to location, spri
XenoSearch [22] provide facilities to query such data toenakmonitoring data at the node where it is produced and set-

ting up an overlay or direct network connections as needed 2004.
to route data from nodes of interest to the node that issueg’] JP-Al-(CrOWEV?ﬁA, S,s Mt-tHFantd, T. lfd H/_?\lrrisy A.d.][*erlbeﬁ,twl- o
. . H . . arker, and . A. Pratl. Futuregria: program Tor long-taesearc

a momtqrmg q_uery_ [13' 27]'_ In Su_Ch sy_ster_n_s mlgrf’mon IS into grid systems architecture. Rroceedings of the UK e-Science
not feasible. Likewise, data-intensive scientific applmas All Hands Meeting September 2003.
that analyze data collected by a high-bandwidth instrument[8] I. Foster et al. The grid2003 production grid: Principknd practice.
(e.g., a particle accelerator) may wish to couple procgssin " HPDC-13 2004. . .

he | . h he d . d d.i hich . [9] National Science Foundation. The GENI Initiative.
tot e o_catlon w e_ret e datais produced, in whic ‘case Mi-"" nyn:/www.nsf.govicise/geni/ .
gration is not feasible. On the other hand, emerging “dataio] M. J. Freedman, E. Freudenthal, and D. Mazires. Dentiaig
grids” that enable cross-site data sharing and federatipn m content publication with coral. INSDL 2004.
reduce this location dependence for some scientific applicalt] Y- Fu- J. Chase, B. Chun, S. Schwab, and A. Vahdat. Starp:

. architecture for secure resource peeringS@®SP '032003.
tlons'_therel_)y ma.ke C_QmpUtatlon mlg_ratlon more feasible fo[12] M. Harchol-Balter and A. B. Downey. Exploiting procd#stime
data-intensive scientific applications in the future. distributions for dynamic load balancin§OCS 15(3), 1997.

PlanetLab is the largest public, shared distributed platf13] J. Li?nQ,fS-E-_KQBI- GdurJta, and K. Nahrstedt. Mon: Oniend
form in terms of number of users and sites. Thus, we be-, OVerlays for distributed system managementMORLDS 2005.

. i . 414] M. Massie, B. Chun, and D. Culler. The ganglia distréalit
!'eve_ that the platform-specific ConC|U_S|0n5 we haV_e C_“'aW monitoring system: design, implementation, and expeeieRarallel
in this paper can extrapolate to future time-shared distieib Computing 30(7), 2004.
platform used for developing and deploying wide-area api15l D- Oppenheimer, J. Albrecht, D. Patterson, and A. Vardasign

.. . L. and implementation tradeoffs for wide-area resource s&go In
plications that allow users to deploy their applicationsasn HPDC. 2005,
many nodes as they wish and to freely migrate those applii6] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modglicp
cation instances when desired. A platform with cost-based ggg%ll\rmi 1A9 Siénple model and its empirical validation. In
or perfo_rmance-ba_sed disincentives to resource consampti [17] V. S. Pai http//codeen.cs. princeton.edu/cotop/
would likely result in smaller—;ca_k_e dgployments an@ MOr€1g] v, S. Pai.http://comon.cs.princeton.edu/ .
careful resource usage, buariability in resource utiliza- [19] S.Rhea, B.-G. Chun, J. Kubiatowicz, and S. Shenkeingithe
tion across nodes and over time should persist, in which case ggﬁobsarrassing slowness of opendht on planetla@/@RLDS '05
the usefulness of matChmg (and re-m{.ﬂchmg) appllcaeen r [20] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnaga
source demand to node resource avalla_blllty would too. S. Shenker, I. Stoica, and H. Yu. Opendht: A public dht sergiod
On the other hand, our “black-box” view of background its uses. IrSIGCOMM 2005.
platform utilization means our results cannot be easily ex{21] M. Ripeanu, M. Bowman, J. Chase, |. Foster, and M. Mitenk

. Globus and planetlab resource management solutions cechgar
trapolated to environments that perform global resourbedal- [\ppc.13 25’04. 9 P

ing (e.g., all application deployers submit their jobs t@a-€ [22] David Spence and Tim Harris. Xenosearch: Distributsburce
tralized scheduler that makes deployment and migration de- giosggvefy in the xenoserver open platform Rroceedings of HPDC
C.ISIOHS ina goordlnated way), or in which mulnple app_llga- £23] N. Spring, L. Peterson, A. Bavier, and V. S. Pai. Usingngitlab for
t|0n3.make. S|mU|.taneOUS placemept and m'Qra_Uon de<_:|._S|on network research: Myths, realities, and best practié@v SIGOPS
Detailed simulation of platform-wide scheduling policies Operating Systems Revied0(1), 2006.

and the aggregate behavior that emerges from systems witBf] J. Stribling. All-pairs pings for planetlab.

Itiple interacting per-application scheduling polgiare hitp://wwaw.pdos. |cs.mit.edur'strib/pl_app! '
muitip . - gp pp gp [25] S. Vazhkudai, J. Schopf, and I. Foster. Predicting #mggomance of
challenging topics for future work. Nonetheless, our anal- ~ wide area data transfers. IRDPS 2002.
ysis methodology represents a starting point for evalgatin[26] L. Wang, K. Park, R. Pang, V. S. Pai, and L. Peterson.zRéity and
more complex system models and additional placement and izgmz;rgifce?gﬁg;ggzte”t distribution networkUsenix Annual
migration strategies. A_S‘ future Plane_tl-ab'l'ke sy;tem}hsu [27] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: Aormation
as GENI [9] come online, and as wide-area Grid systems plane for networked systems. HotNets I} 2003.
become more widely used, examining how well these resultg8] K. Webb, M. Hibler, R. Ricci, A. Clements, and J. Lepreau

. P . Implementing the emulab-planetlab portal: Experiencelassbns
extrapolate to other environments and application clasgkes learned. IMWORLDS '042004.

become key research questions. [29] R.Wolski. Dynamically forecasting network perforntanusing the
network weather servic€luster Computing1(1), 1998.
8. REFERENCES [30] P.Yalagandula, S. Nath, H. Yu, P. B. Gibbons, and S. &edBeyond
[1] A. AuYoung, B. Chun, A. Snoeren, and A. Vahdat. Resource availability: Towards a deeper understanding of machiieréa
allocation in federated distributed computing infrastawes. In characteristics in large distributed systemsW@®RLDS2004.
OASIS '04 2004. [31] L. Yang, I. Foster, and J. M. Schopf. Homeostatic and
[2] H. Balakrishnan, M. Stemm, S. Seshan, and R. H. Katz. yaiad) tendency-based cpu load predictionsIRDPS 2003.
stability in wide-area network performance. SltGMETRICS1997. [32] L. Yang, J.M. Schopf, and |. Foster. Conservative saliag: Using
[3] A. Bavier, L. Peterson, M. Wawrzoniak, S. Karlin, T. Sip&l predicted variance to improve scheduling decisions in dyoa
T. Roscoe, D. Culler, B. Chun, and M. Bowman. Operating syste environments. IrBupercomputing 2002003.
support for planetary-scale network servicesNBDI, 2004. [33] X.Zhang and J. Schopf. Performance analysis of theugiabolkit
[4] Distributed computing: We come in pead®ed Herring Magazine monitoring and discovery service, mds2.Rroceedings of the
http://www.redherring.com/article.aspx?a=10821 International Workshop on Middleware Performance (MP 2004
[5] P.Brett. Iperf. April 2004.
http://www.planet-lab.org/logs/iperf/ . [34] Y. Zhang, V. Paxson, and S. Shenker. The stationariiptefnet path
[6] Y. Chen, D. Bindel, H. Song, and R. H. Katz. An algebraipiagmch proprerties: routing, loss, and throughput. TechnicabreACIRI,

to practical and scalable overlay network monitoringSIGCOMM May 2000.

