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Abstract

In this paper, we describe three key problems for trust man-
agement in federated systems and present a layered archi-
tecture for addressing them. The three problems we ad-
dress include how to express and verify trust in a flexible
and scalable manner, how to monitor the use of trust re-
lationships over time, and how to manage and reevaluate
trust relationships based on historical traces of past be-
havior. While previous work provides the basis for express-
ing and verifying trust, it does not address the concurrent
problems of how to continuously monitor and manage trust
relationships over time. These problems close the loop on
trust management and are especially relevant in the con-
text of federated systems where remote resources can be
acquired across multiple administrative domains and used
in potentially undesirable ways (e.g., to launch denial-of-
service attacks).

1 Introduction

Emerging federated computing systems, including wide-
area network testbeds [7, 22, 31] and computational
Grids [13, 14], are significantly impacting the quality of
networking and systems research in wide-area comput-
ing systems. These systems are characterized by multiple
diverse sites contributing computational and networking
resources and sharing them amongst principals spanning
multiple administrative domains. In such systems, trust
management is a key challenge, as trust relationships be-
tween principals can be complex and must be managed in
a flexible and scalable manner. While previous work [2, 4,
5, 12, 23, 25, 28] provides the basis for expressing, delegat-
ing, and verifying trust, it does not address the concurrent
problems of how to continuously monitor and manage trust
relationships over time. These problems close the loop on
trust management and are especially relevant in the con-
text of federated systems where remote resources may be
acquired across multiple administrative domains and used
in potentially undesirable ways.

In federated systems, trust management must also be

accompanied with accountability. Whether intentional or
not, misuse of shared resources is inevitable, in particular
in research settings where experimental network services
and measurement studies often use the network in unusual
ways. While the intent is rarely malicious, anomalous use
of the network is often irresponsible and naive. For ex-
ample, while a naive researcher may feel it is perfectly
acceptable to map the topology of the Internet by walk-
ing the IP address space and performing traceroute
probes to random nodes on port 80, such probing is typi-
cally viewed by an ISP as a hostile attack with the signa-
ture of a scanning worm [19, 20]. While we certainly do
not want to constrain innovation, at the same time we must
recognize the realities of the Internet and disallow blatant
misuse of resources that is likely to cause problems. To-
wards this end, trust to use resources must be accompanied
with full accountability to allow anomalous resource use to
be rapidly identified, handled, and traced back to respon-
sible parties.

In this paper, we present a layered architecture for ad-
dressing the end-to-end trust management and account-
ability problem. In this context, the three subproblems
faced are: (i) expressing and verifying trust in a flexible,
scalable, and accountable manner, (ii) monitoring trust re-
lationships over time so that misuse of trust can be de-
tected and (iii) managing and reevaluating trust relation-
ships based on automatic detection of misuse of trust. In
wide-area network testbeds, for example, these subprob-
lems can be cast as (i) how are principals authorized to
use resources in the system, (ii) how do we monitor use
of these resources so that abusive behavior (e.g., scanning
a remote network for valid IP addresses) can be tracked
down, and (iii) how is abusive behavior automatically de-
tected and handled before it escalates to a point where for-
mal complaints are made (e.g., from external ISPs). Ad-
dressing these three problems will be key in sustaining
long-term growth and to avoid large amounts of traffic fil-
tering by disgruntled ISPs.

In Section 2, we motivate the end-to-end trust man-
agement and accountability problem based on experience
to date on PlanetLab [7, 22], an open, wide-area network
testbed. In Section 3, we describe the authentication and
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authorization layer which addresses how trust is expressed,
delegated, and verified and how authentication and autho-
rization is performed. In Section 4, we describe the ac-
countability layer which addresses how trust relationships
are monitored over time to detect misuse of resources. In
Section 5, we describe the anomaly detection layer which
addresses how misuse of resources can be automatically
detected and acted upon based on local events on indi-
vidual nodes and correlation of events across nodes. In
Section 6, we discuss related work and in Section 7, we
conclude the paper.

2 Motivation

In this section, we motivate the end-to-end trust manage-
ment and accountability problem in the context of Plan-
etLab [7, 22], an open, shared overlay for developing and
deploying planetary-scale network services. There are a
number of instances in PlanetLab where trust relationships
need to be established. The most basic example of this is
authorization to create a slice, a network of virtual ma-
chines, and to deploy a wide-area network service in it.
Because users in PlanetLab span multiple administrative
domains 1, it is infeasible to have a central entity authorize
every possible user. In order to scale, delegation is needed.
For example, one natural way to delegate in this case is
to authorize principle investigators (PIs) at each site then
have PIs, in turn, authorize graduate students. Graduate
students might, in turn, authorize undergraduate students,
and so on.

Once users have been authorized to create slices and
deploy services, we then need to monitor resource usage
in each slice to ensure that resources are not being mis-
used. Table 1 lists a sample of resource misuse incidents
on PlanetLab that have resulted in external complaints
from ISPs, operational staff at PlanetLab sites, operational
staff at universities, external sites (e.g., companies host-
ing web servers), external users, or some combination. In
all cases so far, misuse appears to have been largely unin-
tentional and due to either naive service design and anal-
ysis, programmer errors, or plain irresponsible use of the
resources. Examples of resource misuse include network
mapping experiments that probe large numbers of random
IP addresses (looks like a scanning worm), services ag-
gressively traceroute’ing to certain target sites on dif-
ferent ports (looks like a portscan), services performing
distributed measurement to a target site (looks like a DDoS
attack), services sending large numbers of ICMP packets
(not a bandwidth problem, but renders low-end routers un-
usable), etc.

1As of May 2003, PlanetLab consists of 151 nodes at 69 sites spread
across 13 countries

When anomalous resource usage occurs, we need a
way to quickly determine accountability and to resolve the
problem in a timely manner before it escalates to external
sites generating complaints. Being able to determine ac-
countability means being able to identify the responsible
user, the user who authorized that user, and so on along a
chain of trust. Resolving the problem means being able to
quickly localize where the anomalous resource use is oc-
curring and to suspend or kill the associated service. The
consequences of not addressing these problems are signif-
icant and real. First, ISPs receiving network traffic they
deem to be hostile could stop routing packets to and from
our system. Second, sites contributing resources could pull
the plug on their nodes if the operational overhead of han-
dling external complaints is too high. Finally, if external
complaints are too frequent, this could result in additional
legal and administrative pressure to stop contributing re-
sources.

Detecting anomalous resource usage in the first place is
also a problem. Even if we have mechanisms to determine
accountability and to resolve problems, it is still undesir-
able to wait until external complaints arise since such com-
plaints still carry the risks of the consequences previously
mentioned. Instead, what we would like is to proactively
identify anomalous resource usage and perform appropri-
ate actions in an automated fashion. In general, using au-
tomation to catch all types of resource misuse that might
generate an external complaint is impossible. On the other
hand, we do not need to eliminate all false positives and
negatives to be effective. Approximate anomaly detection
and response on even human timescales, at least for Planet-
Lab, is likely to be both possible and effective for two rea-
sons: (i) the signatures associated with past incidents ap-
pear to be easy to detect and (ii) background noise caused
by Internet worms, scanning, and probing by real attackers
creates enough of a diversion that network operations can-
not devote human resources to respond to all anomalous
events, only the most significant and persistent ones.

3 Authentication and Authorization

The first layer in our architecture is the authentication and
authorization layer. In large federated systems, it is both
infeasible and undesirable to have a central entity vouch
for the identities of all principals and to make associated
authorization decisions regarding access control. In order
for a system to scale, trust management must be decentral-
ized to allow trust to be flexibly delegated between princi-
pals. At the same time, while delegation of trust is key for
scaling, trust also needs to be fully accountable to allow
delegation to be traced along paths of delegated trust. Ac-
countable delegation is key in managing trust relationships
and to trace misuse of the system back to the responsible
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Date Incident Complaint From
Oct 2002 High UDP packet rate (on port 0), many non-existent IPs Multiple ISPs and PlanetLab sites
Dec 2002 Running Gnutella, violates local AUP PlanetLab site
Dec 2002 Large number of packets to non-existent IPs Multiple ISPs
Dec 2002 Large number of non-standard ICMP packets Campus net admins
Dec 2002 High UDP packet rate and bandwidth usage Multiple PlanetLab sites
Dec 2002 UDP packet traffic spikes Campus net admins
Dec 2002 High ICMP packet rate Multiple ISPs and PlanetLab sites
Dec 2002 Pinging many external WWW servers PlanetLab site
Feb 2003 High UDP packet rate PlanetLab site
Mar 2003 High ICMP packet rate Campus net admins
Apr 2003 Mapping Internet on port 80, many non-existent IPs Multiple PlanetLab sites and campuses
Apr 2003 DDoS on multiple WWW servers (measurement exp) Multiple companies
Apr 2003 High UDP packet rate PlanetLab site
May 2003 DoS on campus web server PlanetLab site
May 2003 Portscan on external network External site
May 2003 Periodic (20 min) portscans Multiple external sites
May 2003 Port scan External user

Table 1: A sample of resource misuse on PlanetLab during the period starting October 2002 and ending May 2003. Each
row in the table corresponds to a service generating external network traffic which resulted in complaints from ISPs,
operational staff at PlanetLab sites, operational staff at universities, external sites (e.g., companies hosting web servers),
external users, or some combination. In all cases, incidents were resolved through a combination of email and phone
conversations (usually over a period of days).

principals, the principals who vouched for their identities,
and the principals who authorized them to use the sys-
tem. The authentication and authorization layer provides
the mechanisms to express, delegate, and verify trust rela-
tionships and to perform authentication and authorization
using public key cryptography based on fully accountable
paths of trust.

3.1 Delegation of Trust

Previous work in distributed security infrastructures has
addressed the trust delegation problem. Distributed capa-
bility systems, used in distributed operating systems such
as Amoeba [28] and Chorus [25], use unforgeable tokens
to represent access control rights to perform privileged ac-
tions. Such tokens are typically constructed using large
random numbers which are hard for an adversary to guess.
A capability granting access to an object includes a large
random number, an identifier for the object, and a set of
actions that can be performed on the object. The princi-
pal who issues a capability on an object grants access on
that object to any requesting principal who presents the as-
sociated capability. Using capabilities, delegation of trust
is natural. A principal P1 delegates trust to P2 simply by
sending P2 the associated capability. P2, in turn, can fur-
ther delegate trust to a principal P3 in the same manner,

and so on. A key advantage of this approach is that no ad-
ditional mechanisms are needed to delegate trust between
principals.

In large federated systems, there are three key prob-
lems with distributed capabilities. First, capabilities are
not fully accountable. If trust is delegated across a path
of principals P1 → P2 → · · · → Pn−1 → Pn, there is
no easy way to trace the delegation across the path of trust.
Should Pn use the delegated capability to abuse the system
in some manner, one thing we would like to know is that
Pn−1 was the principal who authorized Pn. Knowing who
authorized the responsible party is important since we en-
vision that chains of trust will frequently mirror the natural
hierarchy of privilege associated with organizations. For
example, in PlanetLab, a common chain of trust might be
Ppi → Pgrad → Pugrad, where Ppi is a principle inves-
tigator associated with a contributing site and Pgrad and
Pugrad are graduate and undergraduate students, respec-
tively, at that site working on a related project. Account-
able paths of trust are a key element for implementing full
accountability (Section 4).

Second, distributed capability systems presume the ex-
istence of secure, authenticated channels on which capa-
bilities can be granted and transferred without fear of in-
terception by malicious third parties. While such an as-
sumption might hold in distributed systems in certain set-
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tings (e.g., with specialized trusted hardware), it does not
hold in a large federated system where the set of principals
is large, dynamic, and crosses multiple administrative do-
mains. Without authentication, should P want to grant a
new capability to Q, P cannot know whether the principal
it is talking to is indeedQ or not. If the principal turns out
not to be Q, the capability might be used in some undesir-
able and abusive manner (e.g., scanning remote hosts and
launching scripted attacks). The same authentication prob-
lem occurs when capabilities are delegated by transferring
them between principals; the principal delegating the ca-
pability must ensure it is talking to the intended principal.

Third, distributed capability systems make certain types
of trust relationships awkward, if not impossible, to ex-
press. For example, a set of principals P1, P2, . . . , Pn
might trust a specific principal Q to make certain access
control decisions on their behalf by issuing capabilities
(e.g., a set of nodes trusting some entity to make resource
management decisions on their behalf). However, since
the capabilities are issued by Q, if a principal R subse-
quently obtains and presents a capability issued by Q to
Pi, Pi has no knowledge of the capability, since the capa-
bility was issued locally by Q, not Pi. For Pi to accept
the capability, Pi would have to know about the capability
either a priori or be able to dynamically determine that the
capability is valid. Another example of where expressing
trust is awkward is partial delegation of trust. For exam-
ple, suppose P issues a capability to Q to perform actions
a1 and a2 at P . If Q subsequently wants to delegate to R
the ability to only perform a1, expressing and validating
this type of partial delegation using distributed capabilities
in a general purpose manner with an arbitrary number of
actions can be difficult.

Trust management systems such as PolicyMaker [5] and
KeyNote [4] also provide mechanisms for delegation of
trust. In contrast to distributed capability systems, though,
delegation is fully accountable along paths of trust. In trust
management systems, principals are represented as public
keys. Trust is delegated between principals through signed
statements of the form P asserts Q may perform some ac-
tion a, where a is a predicate expressed in a trust man-
agement language. Authorization to perform an action is
then done using a compliance checker which, in essence,
searches for a path of signed statements starting with a
trusted principal and ending with the requesting princi-
pal, where each statement has a predicate that evaluates
to true, has not expired, and has a valid signature. Since
actions are represented simply as predicates in a trust man-
agement language, trust management systems are capable
of expressing complex trust relationships in a far simpler
manner than would be possible using a capability system.
On the other hand, like distributed capability systems, they
also presume the existence of secure, authenticated chan-

nels (e.g., as established using a preexisting public key in-
frastructure).

3.2 Implementation

For full accountability, decisions on both authentication
and authorization should be traceable along paths of dele-
gated trust whenever a privileged action is performed. In
our current implementation, we support full accountabil-
ity for both authentication and authorization. For authen-
tication, we rely on SSL authentication based on chains
of X.509 certificates. As pointed out in [5], we can view
X.509 certificates as simply being a special case of trust
management, where the action being delegated is the as-
sertion of identity. For example, whenever a certificate au-
thority such as Verisign issues an X.509 certificate to some
principal, it is effectively asserting that principal’s identity
for some period of time. Given a chain of X.509 certifi-
cates and a request to perform some privileged action, we
can trace the assertion of identity from some trusted en-
tity (e.g., a trusted certificate authority) across a chain of
principals to determine the path by which the requesting
principal’s identity was asserted.

For authorization, we use trust management certificates
to assert a delegation of trust from one principal to an-
other for some period of time. Trust management certifi-
cates are represented as signed XML statements. Each
statement includes the issuing principal’s public key, the
subject’s public key, a valid time interval, the action be-
ing delegated, an application-specific language in which
the action is expressed, and the issuer’s signature. In con-
trast to a number of previous systems which prescribe a
specific language to express actions, our implementation
treats actions as opaque strings. This allows actions to be
expressed in a language most natural to the application.
Given a chain of trust management certificates delegating
trust across a chain of principals, we use a simple com-
pliance checker to verify the validity of the chain. The
compliance checker does this by first verifying the valid-
ity of signatures on each hop of the chain and second by
checking that each hop in the chain is delegating a subset
of the trust in the previous hop both in time and in “space”
using an application-supplied callback function. As with
chains of X.509 certificates for authentication, a chain of
trust management certificates allows for full traceability
along a path of delegated trust for authorization.

4 Accountability

The second layer in our architecture is the accountability
layer. The accountability layer provides two key services.
First, it provides continuous monitoring on how trust re-
lationships are being used by the principals in the system.
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Second, it provides periodic logging of monitoring data to
create historical traces of how principals behave over time.
Together, monitoring and logging allow trust relationships
to be continuously scrutinized, such that should a misuse
of trust occur, it is a straightforward exercise to search the
log data and identify the responsible principal along with
(i) the chain of trust that asserted that principal’s identity
and (ii) the chain of trust that authorized the principal to
perform the trusted action. Appropriate actions can then
be performed either in-band or out-of-band (e.g., the user
could be reprimanded or have his/her privileges revoked)
along the appropriate paths of trust.

4.1 Resource Usage

The key class of trust relationships we are concerned with
in federated systems are ones that either directly or indi-
rectly authorize resource usage on remote machines and
networks. In the PlanetLab network testbed, for example,
users have the ability to dynamically create a slice, a net-
work of virtual machines, and to deploy a wide-area net-
work service in it. Such services are capable of consum-
ing both local resources as well as remote resources over
the network. While virtual machines [1, 30], sandbox-
ing [17, 27] and resource management mechanisms [11,
15, 26, 29] can ensure secure, bounded consumption of lo-
cal resources, network services are still capable of affect-
ing remote systems over the network. For example, there is
nothing to prevent a wide-area service from using its mul-
tiple vantage points of the network to launch a distributed
denial-of-service attack. In the event that such abuse oc-
curs (either intentionally or not), we need to be able to
identify the responsible principal and who authorized that
principal to use the system.

4.2 Monitoring

Monitoring for resource usage accountability can be im-
plemented using a combination of existing OS accounting
and monitoring mechanisms, additional fine-grain moni-
toring primitives, and indirection. Existing OS account-
ing and monitoring mechanisms already provide methods
to associate CPU, memory, network, and disk usage with a
specific process and local principal (e.g., a login in Linux).
In Linux, for example, a significant amount of information
about a process can be gleaned simply by inspecting the
/proc filesystem or by using programs which interpret
the contents of /proc. For example, the fuser com-
mand maps use of files, TCP ports, and UDP ports to a
local principal. Using existing OS accounting and moni-
toring mechanisms is desirable since such mechanisms are
already well-supported. On the other hand, such mecha-
nisms alone are insufficient to provide monitoring at the

level of detail required to provide full accountability.

To provide full accountability, fine-grain monitoring
primitives are needed that allow resource usage in the
system to be monitored at various levels of aggregation.
As mentioned, existing resource management mechanisms
such as proportional-share schedulers can ensure bounded
consumption of local resources on each node. On the other
hand, short of severely constraining the types of applica-
tions that can be supported, applications and network ser-
vices generally have free use of the network in terms of
where data can be sent and the type of data that can be
sent. Existing network monitoring primitives on modern
operating systems do not provide monitoring information
at the necessary granularity. For example, in Linux, net-
work statistics exposed through the /proc filesystem are
aggregate statistics for the entire node and do not allow
network statistics for a specific local principal to be col-
lected. Furthermore, even aggregate network statistics in
Linux do not capture network traffic statistics at the level
of detail needed for full accountability (e.g., per TCP port,
per destination IP address, etc.).

Fine-grain monitoring primitives on network usage can
be provided by logging additional information in the ker-
nel and exposing this information at user-level (e.g., us-
ing the /proc filesystem, a pseudo device and appropri-
ate ioctl commands, etc.). On each node in the sys-
tem, we would like to be able to observe how each lo-
cal principal is using the network at a fine level of detail.
For systems such as wide-area network testbeds, the over-
head of such monitoring is both warranted and likely to
be negligible anyway given the speed of modern proces-
sors and network interfaces in comparison to end-to-end
wide-area network bandwidth. For each local principal,
we would like to collect statistics such as TCP ports used,
UDP ports used, ICMP packets sent, and, importantly, des-
tination IP addresses (along with packet and byte counts).
In PlanetLab, we have already begun the implementation
and deployment of early versions of mechanisms that col-
lect these types of statistics and expose them to user-level
programs.

With resource usage statistics being collected on local
principals, the last piece needed is the ability to map lo-
cal principals back to global principals. Examples of lo-
cal principal names include uid’s, Linux vserver security
contexts, and virtual machine IDs. Examples of global
principal names include global usernames or, more practi-
cally, public keys (and associated identifying information
through an identity chain of trust) as described in Sec-
tion 3. Because federated systems span multiple admin-
istrative domains and are composed of nodes, each with
their own namespace of local principals, a natural way for
a global principal to make use of remote resources is for
the global principal to obtain a set of distributed resources
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and execute as local principals while maintaining global to
local principal mappings. In Grids based on the Globus
toolkit [13], for example, a file (/etc/grid mapfile)
maps global names from X.509 certificates to local Unix
logins. In providing full accountability, a federated system
must maintain enough information to map from resource
usage to a local principal to a public key to identifying
user information associated with that public key.

4.3 Logging

Logging creates historical traces of how principals be-
have over time and can be implemented using existing log-
ging and database technology. Given appropriate resource
monitoring primitives, resource usage information on each
node can be periodically collected and mapped back to as-
sociated principals along chains of trust. Such informa-
tion might then be stored in standard logfiles using exist-
ing mechanisms such as syslog. Alternatively, resource
usage information might be stored and indexed in local re-
lational databases to allow complex queries on logfile data
to be performed in a timely manner.

In a federated system, resource usage information needs
to be collected and logged in persistent storage for at least
two reasons. First, because misuse of resources can require
correlating events over time and aggregating resource us-
age behavior (e.g., probing of a large number of IP ad-
dresses over a few hours), the system needs to maintain
information over a window of time as opposed to just trig-
gering on observation of specific events. Second, because
nodes can crash and we do not know in advance how much
information we may need to perform postmortem analysis
in the event that resource misuse is detected, logging ex-
tensive monitoring information to persistent storage is a
prudent decision.

4.4 Implementation

Our implementation currently consists of resource mon-
itoring and logging of CPU, memory, network, and disk
usage statistics for all active slices on all nodes of Plan-
etLab. Resource monitoring is continuous and is reported
through a variety of different services, a number of which
are maintained by other users and offered as shared ser-
vices. Two examples of resource monitoring include the
/proc/scout interface, which provides fine-grain net-
work monitoring statistics, and the slicestat sensor
server interface, which provides current per-slice resource
usage statistics. Both examples rely on Linux kernel exten-
sions to export relevant resource monitoring information.
/proc/scout’s monitoring interface is implemented as
part of SILK, a loadable kernel module which provides
resource isolation and scheduling mechanisms for slices.

Network monitoring in SILK includes extensive per-slice
network information such as total bytes/packets sent and
received for TCP, UDP, and ICMP traffic for each slice
and the set of destination IP addresses each slice has sent
to. The slicestat sensor server also relies on kernel
extensions. It uses information exported by Vservers [27]
(a kernel patch) in combination with existing per-process
information contained in /proc in order to provide cur-
rent per-slice resource usage information for CPU, phys-
ical and virtual memory, and send/receive network band-
width over the last 1, 5, and 15 minutes.

5 Anomaly Detection

The third layer in our architecture is the anomaly detec-
tion layer. The goal of this layer is to perform automatic
detection of anomalous resource usage and to perform ap-
propriate actions in response. As previously mentioned,
while isolation and resource management mechanisms can
bound local resource consumption, network applications
and services can still affect remote systems over the net-
work in significant ways, even with low to moderate bit
rates. In response to such misuse of resources, we need
a way to automatically identify anomalous resource us-
age and to resolve problems in a timely manner before
they escalate to a point where external sites issue formal
complaints (e.g., by automatically suspending the asso-
ciated application/service, contacting the relevant princi-
pals, etc.). Implementing automated anomaly detection
requires a combination of both local anomaly detection on
each node and distributed anomaly detection that corre-
lates events across nodes. In this section, we describe the
key issues and sketch a potential path towards a solution.

5.1 Local Anomaly Detection

Local anomaly detection allows the system to flag resource
usage on individual nodes that is deemed suspicious or
likely to cause external problems and to perform appropri-
ate actions. We use the monitoring and logging primitives
from the accountability layer to observe resource usage in-
formation for each principal on each node. We then ap-
ply rules that map resource usage information over time
to anomalous events along with a warning level. For each
type of anomalous event and each warning level, there is
a set of associated actions that are performed. For exam-
ple, if the anomaly detection layer detects that an appli-
cation is performing systematic portscans on a target net-
work, the actions associated with this detection could be
filtering of all external network traffic for the application
and emailing operational support staff about the applica-
tion, the anomaly, the responsible principal and associated
chains of trust.
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Local anomaly detection focuses mainly on how ap-
plications and services use the network, since use of lo-
cal computational resources can be bound and controlled
through use of appropriate VMM and resource manage-
ment techniques. In essence, network anomaly detection
in a federated system can be viewed as being the con-
verse of the intrusion detection problem. In traditional net-
work intrusion detection systems (NIDS) [3, 18, 21, 24],
incoming network traffic is scrutinized and rules are ap-
plied which generate warnings on potentially hostile traffic
from the outside world. In contrast, in a federated system,
what we want is to scrutinize outgoing network traffic and
to generate warnings (and take actions, such as suspending
the offending application of service) on potentially hostile
traffic to the outside world. In summary, what is needed is
a reverse anomaly detection system.

In the local node case, reverse anomaly detection can
be implemented by using monitoring and logging informa-
tion from the accountability layer and applying appropriate
rules and actions. One natural starting point towards such
an implementation is to start with an existing, open NIDS
(e.g., snort [24], Bro [21], etc.) and simply run the NIDS
in reverse. That is, view all traffic being generated by the
node as the potentially hostile traffic and view all external
destinations as being potential targets. Running an existing
NIDS in reverse has the benefit of leveraging existing rules
for various types of anomaly detection. On the other hand,
this only allows anomaly detection at a a single level of
aggregation, the entire node. The key challenge for imple-
menting effective local anomaly detection will be figuring
out how to perform anomaly detection at multiple levels
of aggregation (e.g., per-principal, per-process, etc.) and
tie that information back to responsible principals along
chains of trust in an efficient manner.

5.2 Distributed Anomaly Detection

Distributed anomaly detection identifies anomalous net-
work behavior in the aggregate by correlating network
events across multiple nodes, performing distributed ag-
gregation, and applying rules in either an incremental or
aggregate manner. In wide-area network testbeds, for
example, network services (e.g., content distributed net-
works, global storage systems, etc.) run on large numbers
of geographically distributed nodes. In such settings, while
a service’s behavior on a single node may be acceptable,
its behavior in the aggregate may not be. For example,
a service running on 1000 nodes in the wide-area could
portscan a target machine by having a process running on
each node probe the target on just a small number of ports,
thereby avoiding local detection. To detect these types
of anomalies, network events need to be correlated across
nodes and aggregation needs to be performed at multiple

levels (e.g., per-application, per-slice, entire system, etc.)
while allowing responsible principals to be held fully ac-
countable through paths of trust.

The key challenge in implementing distributed anomaly
detection is keeping overhead low while detecting anoma-
lies in a timely manner. Given the monitoring and log-
ging from the accountability layer, for example, one brute
force approach for detection is to simply replicate all out-
going network traffic from all nodes to a central site where
a traditional NIDS is running in reverse. Each replicated
packet would also be tagged with additional metadata (e.g.,
responsible principal, application, process IDs, etc.) to al-
low network anomalies to be handled and traced back to a
responsible principal along a path of trust. The brute force
approach, while simple, is untenable in large systems due
to overhead and scalability problems. To make distributed
anomaly detection practical, nodes will have to use sub-
stantially less bandwidth compared to the brute-force ap-
proach.

One possible approach to solving the distributed
anomaly detection problem in a scalable manner is to
leverage location-independent, key-based routing (KBR)
services [10]. If all data is processed at a single site,
centralized bandwidth and computation is required which
clearly presents a bottleneck. On the other hand, if pro-
cessing is distributed, then each node in the system col-
lects and processes a fraction of the total data, thereby im-
proving scalability. Using KBR with PlanetLab, for ex-
ample, we might perform per-slice anomaly detection by
hashing slice names to keys, routing anomaly detection
data to nodes responsible for associated keys, and apply-
ing anomaly detection rules. Of course, if the data being
routed to the nodes is raw packets, then aggregate band-
width usage in this scheme is no better than the centralized,
brute-force approach. Thus, a key challenge in implement-
ing effective distributed anomaly detection will be figuring
out how to perform appropriate summarization when ag-
gregating data while still detecting significant anomalies.

6 Related Work

Previous work in trust management systems [4, 5], dis-
tributed capability systems [25, 28], and distributed secu-
rity infrastructures [2, 12, 23] provides the basis for ex-
pressing, delegating, and verifying trust in federated sys-
tems. These systems enable scalability by allowing trust
relationships to be expressed and verified in a completely
decentralized fashion through delegation. Our work builds
on these efforts by addressing the concurrent problems
of how to continuously monitor and manage trust rela-
tionships over time, once trust relationships have already
been established. These problems close the loop on trust
management and are especially relevant in the context
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of federated systems where remote resources can be ac-
quired across multiple administrative domains and poten-
tially used in undesirable ways (e.g., to launch denial-of-
service attacks).

Network intrusion detection systems (NIDS) such as
snort [24] and Bro [21] use traffic analysis to detect and
respond to anomalous network traffic. The key problem
these systems address is how to identify anomalous incom-
ing traffic from the outside world and to perform appro-
priate actions. In contrast, federated systems are primarily
concerned with the converse problem, namely how to iden-
tify anomalous outgoing traffic to the outside world and to
perform appropriate actions. Running a NIDS in reverse
on a single node provides a starting point towards address-
ing this problem. Such an arrangement, however, only pro-
vides anomaly detection at a single level of aggregation,
the entire node. To provide full accountability, federated
systems require aggregation at multiple levels both on in-
dividual nodes and correlated across nodes for distributed
anomaly detection. Addressing this problem in an efficient
and effective manner is still an open research problem.

Previous work on limiting the capabilities of compro-
mised machines also relies on reverse anomaly detection.
There, anomaly detection is applied on outgoing network
traffic and hostile packets are either dropped or throttled
to limit the potential damage an attacker (or worm) might
cause using a compromised machine. AngeL [6] is a
Linux kernel module that implements this idea by inter-
cepting and dropping network packets which match well-
known signatures of over 70 attacks. Williamson’s [32]
work is similarly motivated but focuses exclusively on
self-replicating computer worms and, importantly, does
not require a priori attack signatures. Here, the assump-
tion is that normal network traffic does not involve making
large numbers of connections to distinct machines (as a
scanning worm does). Thus, by limiting the rate of connec-
tions to new hosts, worm propagation can be significantly
slowed. Our work also utilizes reverse anomaly detection
but for a different purpose, namely to protect the Internet
against legitimate distributed applications gone awry.

Work on building accountability into electronic com-
merce protocols also bears some similarity to our work.
There, the key challenge is the design of protocols which
have provable properties with respect to accountability.
For example, a user purchasing service from a service
provider ought to be capable of proving to a third party
that the provider agreed to provide service if the provider
reneges on a transaction. Representative work in this area
includes frameworks [9, 16] for analyzing accountability
in communication protocols and the design of protocols [8]
for delegation of trust with full accountability for elec-
tronic commerce applications. Compared to our work,
these efforts are complementary in that our work is fo-

cused mainly on determining accountability as opposed
to proving accountability through cryptographic mecha-
nisms. How to implement and integrate efficient mecha-
nisms for proving accountability for fine-grain actions in
federated systems remains an interesting research ques-
tion.

7 Conclusion

Emerging federated systems are significantly impacting
the quality of networking and systems research in wide-
area computing systems. In order to maintain this momen-
tum, we argue that better facilities for decentralized trust
management and accountability are needed. Such facili-
ties should allow us to express and verify trust in a flexible
and scalable manner, monitor the use of trust relationships
over time, and manage and reevaluate trust relationships
based on historical traces of past behavior in a fully ac-
countable manner. Towards this end, we are currently in
the process of implementing and deploying infrastructure
to address the first two problems in the context of the Plan-
etLab network testbed. This infrastructure includes au-
thentication and authorization based on a new decentral-
ized trust management system along with fine-grain moni-
toring primitives and extensive logging of resource usage.
We are also investigating initial steps towards rudimentary
reverse anomaly detection to address the third problem.
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