
A scalable file distribution and operating system installation toolkit for clusters

Philippe Augerat1, Wilfrid Billot2, Simon Derr2, Cyrille Martin3

1INPG, ID Laboratory, Grenoble, France
2INRIA, ID Laboratory, Grenoble, France

3Bull/INRIA, France

Abstract:

This paper describes a toolkit for optimizing file
distribution on a large size infrastructure such as a
cluster or a grid of clusters. It provides both the software
for operating system installation and file broadcasting
based on multicast, chain and several tree-structured
algorithms.
It has been used on a 225-node cluster allowing a
complete installation of the cluster in just a few minutes
and efficient file staging for user’s applications. It has
also been used to quickly install Linux, Windows 2000
and dual boot systems.

1. Introduction

Large infrastructures such as big clusters, grids of clusters
or computer rooms at universities have to be managed in a
very automatic, dynamic and efficient way. System
administrators need scalable tools to install, administer
and monitor the infrastructure while users need scalable
tools to program, manage and monitor applications and
data.

On one hand scalability means obtaining more power with
more computers, on the other hand it means obtaining the
same response time regardless of the number of
computers. The Ka project deals mainly with the latter
problem and aims at designing management tools that
scale to thousands of PCs. The main purpose of the Ka
project is file distribution in the context of operating
system installation (very large file distribution) and day-
to-day data broadcasting (small to medium-size file
distribution).

The broadcast problem has been studied considerably in
the framework of message passing libraries and collective
communication operations [15], [16], [17], [18]. Several
algorithms based mainly on multicast and unicast trees
have been suggested in the literature. Yet the lack of a
generic model for “self-made” supercomputers such as
grids or network of workstations makes it harder to decide
which broadcast algorithm is the best. Our idea, then, was
to write, compare and make all these algorithms available
through a general library for file distribution.
Numerous tools exist for deploying a set of PC in clusters,
intranet networks or University computer rooms. Yet, we
think that the Ka management tool is more generic and
scalable than most existing software. Moreover, it is
completely open source and quite easy to maintain.

The library has been used to install a 225-node cluster. It
is also a basis for the design of scalable parallel
commands for cluster management and file staging.

2. Operating system installation

The installation of hundreds of PCs excludes the idea of
performing manual tasks. The data to be transferred
(several gigabytes) also imposes an optimal use of the
network. We present now a three-step automatic
installation process that performs the complete installation
of hundreds of client PCs within fifteen minutes. The first
step automatically launches a small operating system on
each client. Then a previously installed PC is used to
broadcast a file system image to all the client PCs.
Finally, a post installation process provides each
computer with its own name and characteristics.

a) Initial boot process

A blank PC can boot on its network card (PXE protocol)
to obtain information on its name and the operating
system that it will use next. The PXE protocol is used to
contact DHCP and TFTP servers, which provide the client
computer with a boot program, which in turn loads a
“higher level” operating system. This installation scheme
is used classically to install workstations in a computer
room in a university, for instance with the BpBatch
software [6]. .

Since BpBatch is not open source we re-implemented a
limited set of BpBatch features (read files through TFTP,
load and run a Linux kernel, start a computer on its hard
disk) in our boot program, thus providing an Open Source
cloning system. This program names Ka-boot.

The boot program plus the minimal operating system
weigh less than two megabytes. For two hundred PCs, the
duration of the initial boot process will be a few seconds.
A multicast file transfer protocol could be used to
strengthen this part of the installation for thousands of
PCs.

Figure 1 summarizes the “client-server” exchanges during
the first installation stage including the “PXE” and “Ka-
boot” stages.

b) File system cloning

tftpd

tftpd
TFTP Get: state file

state file

Li
nu

x

Reboot

TFTP Get: Linux kernel

Linux kernel

DHCP request

IP address

tftpd

dhcpd

mini−system NFS mount nfsd

K
a

cl
ie

nt
 p

ro
gr

am

Connection to the server

IP address of the previous node in the chain

K
a

se
rv

er
 p

ro
gr

am

Connection

Operating sytem data
K

a
cl

ie
nt

 p
ro

gr
am

Previous node in the chain

Ka server

tftpd
TFTP: Put state file

kaboot file

TFTP Get: script

script file

ka
bo

ot
dhcpd

tftpd

Linux serverNode

P
X

E
IP, filename=kaboot, option135=script

TFTP Get: kaboot

DHCP request

Figure 1

Consider first the case of a sequential client-server
installation. If many PCs need to be installed at the same
time, then the server sends the same complete OS image
many times and this operation becomes a bottleneck.
Several strategies can be used to remove this bottleneck.
Common techniques to broadcast large files on a local
network are IP multicast and optimized unicast tree
broadcasting. We will compare these techniques at the
end of this paper. In this section, we consider the context
of a switched network where we found that the most
suitable strategy is a “pipelined TCP chain”.
The resulting application is named Ka and is available
under the GPL license.

The cloning process with Ka occurs in the following
order: a small diskless Linux operating system is run on
each client system. This system uses a Linux kernel
loaded through TFTP by the boot program and a root
filesystem mounted by NFS through the network. Then it
creates and formats the hard disk partitions, which will be
used to install the operating system and launches the Ka
client. The Ka client will connect to a Ka server located
on the computer to be cloned. When all the machines to
be installed are connected to the Ka server, the chain
algorithm starts.
The Ka server coordinates the creation of a chain of TCP
connections between clients. Once this chain is created, it
is used to broadcast the data (Figure 2). Data is read on
the server’s hard disk, sent to the first client, written on its
hard disk and at the same time forwarded to the second
client, etc. Once all the data have been written on the hard

disk, each computer can reboot and use the system that it
has just installed. In order to avoid restarting the whole
installation procedure, a status file located on the TFTP
server and updated by the installation program tells the
computer to perform its post-installation phase.

The broadcasted data can be a tar image of the root

filesystem for a Linux system, or a raw partition image
for an MS-Windows system.

c) Post-installation

The post-installation stage is the set of operations
executed on a node during its first boot of the newly
installed system. These include writing a fresh boot sector
on the hard drive by running the lilo command and
writing the hostname or the IP address of the node on the
configuration files that need it. On Windows machines
this post-installation stage includes also joining an NT
domain, or generating a new Security ID (SID).

d) Tests

The test bed for our work is a 225-node cluster (Figure 3)
with “mainstream” components.
Each node is a PC equipped with a single Pentium III
processor with 256 Mb of memory and 15 gigabytes of
disk. The 225 computers are connected to an Ethernet
gigabit backbone.

D is k D is k D is k

C lie n t
1

C lie n t
2

C lie n t
3

D is k

S e rv e r

Figure 2: installation chain

The network bandwidth ranges from 100 megabits/s (the
computer network interface) up to 1 gigabit/s (the switch
interface). The switches interconnect (and thus the
hierarchy of the communications) are easily customizable
(ring, double ring, tree, star...). The aggregate bandwidth
for one switch is 3.8 Gigabits.

The installation of a complete Linux system (3 gigabytes
of data) on 225 nodes takes less than fifteen minutes. The
installation of a complete Windows 2000 system (2
gigabytes of data on a 3 gigabytes partition) on 100 took
less than ten minutes (not including the post-installation
process, that takes a few seconds for Linux but may last a
few minutes on Windows systems).

Figure 3: Structure of I-Cluster (INRIA/Lab. Id-imag)

3. File distribution

a) Efficient process launching

The one-to-all copy of a file is a common need for the
users and administrators. It can be used to upgrade a
cluster by upgrading only one node manually and then
broadcasting the changes. File staging is another example
of the need for efficient data copy on a cluster.
File copying can be carried out in the form of a multicast
protocol or a unicast tree-structured protocol.
Implementation of broadcasting algorithms is done in the
framework of a general library for process management
named rshp [1] whose main component is a program
launcher.

The objective of the launcher is first to quickly start all
the processes involved in an application then to convey
the signals between each process properly and finally to
manage the input/output flows of data. The solution
developed within the laboratory uses the standard rshd
daemons and a customized rsh client. This customization
is twofold.
Considering the parallel rsh command as a multi-step
process, one optimization is to minimize the number of
steps. Our implementation carries out recursive calls to
the rsh client so as to cover the computers involved with a
tree. Another optimization is to parallelize each of the
three traditional stages of the rsh (distant access,
authentication, connection set up). In our implementation,
asynchronous distant accesses allow the authentication
part (the longest one) to occur in parallel on each client.

We have implemented four tree-structures: binary,
binomial, flat (one level) and lambda-tree. Each one may
use a synchronous or an asynchronous rsh client. For our
225-node cluster, the best launcher is a flat tree with

asynchronous distant calls. In that experiment, the
launching phase lasts less than half a second for 200
nodes.

b) File broadcasting

In addition to algorithms described in the previous
section, a multicast algorithm and a chain algorithm have
been designed for file broadcasting. The chain
implementation is the same as for operating system
cloning. Our multicast algorithm adds a reliability layer
on top of IP multicast. Two techniques based on the IETF
drafts [3] were used to achieve reliability, ACK and FEC.
In the ACK technique, the server starts sending multicast
packets and waits at regular intervals (every M packets)
for an acknowledgement of delivery (ACK) from each
client. A client sends one ACK for N packets received,
indicating the sequence number of the last received
packets. The performance of the multicast algorithm
mainly depends on the values M and N.

Multicast clients are launched using the best launching
algorithm as presented in the previous section. On our
225-node cluster, we use the asynchronous flat tree
algorithm.

We also tested an existing multicast library named mcl
[4], based on the FEC (Forward Error Correction)
techniques. It consists of transferring redundant packets
so that a client could rebuild lost packets using redundant
ones. This technique appeared not to be suited for our
context because the cost of coding/decoding a packet is
high compared to the network transfer costs.

The figures 3,4 show the performances of the binomial,
binary, chain and multicast algorithm on our cluster for
respectively 16 and 201 nodes.

Figure 4

From this, we see that the binary algorithm is good for
small files while the chain algorithm is the best for large
files. What we should call “small files” depends on the
number of nodes.

The binomial algorithm and the multicast algorithm based
on ACK are useless in our switched network context.
They should be useful for a cluster whose overall
bandwidth is limited. Note the multicast algorithm might

be improved by using more dynamic time windows.

c) Mixed algorithms

Figure 5

In the context of our switched cluster, it is possible to
compare unicast algorithms.
Suppose d is the time needed to establish a connection
from one node to another. Suppose L is the time needed to
transfer a file of size s from one node to another once the

Figure 6

connection has been established. We assume that a node
cannot do anything else while opening a connection.
Therefore, the total time to transfer a file from one node
to another is T = d + L

In the case of an n-ary tree: at each level, the time needed
by a node to contact all the nodes below him is d × n. This
will have to be done for each level, so if the tree has k
levels, the total time for establishing the connections is
()k − 1 × d × n.

The data will be pipelined from the top of the tree down
to all the leaves, and the node that has the most children
will limit the speed of this transfer. In this case, it has n
children, so the transfer time for all the nodes will be
L × n. Therefore the total time for an n-ary tree is
t = ()d × ()k − 1 + L × n.

If n=2, then we have a binary tree with N=2

k
-1 nodes and

t = ()d × ()k − 1 + L × 2. In the case of a chain, we take
n=1 and then k=N, so t = d × ()N − 1 + L.

In the case of a binomial tree: at each step, the transfer
time is d + L. For a binomial tree with k steps, the total
transfer time is t = ()d + L × k.

From this, we can produce a formula to decide which
algorithm is the best depending on d, L and k and provide
the user with a program that automatically chooses the
good algorithm depending on the file size and the number
of nodes involved in the broadcast.

On our 200-node cluster, we have d=0.1 seconds thus d x
N, the time for initializing a connected chain is about 20
seconds for 200 nodes. Yet, we presented in a previous
section a parallel asynchronous launcher that takes less
than 1 second to start a command on 200 nodes. The

reason is that the authentication phase in the rsh daemon
is very long compared to the network latency. It then
happens to be worth mixing the two techniques
(asynchronous launching and chain) to perform optimal
broadcasting.

Suppose now that we establish the chain using the
asynchronous rshp algorithm as described in previous
section. Let I be the duration of this initialization. Let
d’<<d be the TCP/IP latency of the network.
The corresponding transfer time for the mixed algorithm
is then t’=I+ L + d’ x (N –1).

The figures 5 and 6 show that the upgraded chain
algorithm is better than all other algorithms tested even
for small files. The curve is almost the same as would be
the curve for a simple point-to-point file transfer and the
time overhead is very small, between 10% and 25%.

Although the initialization phase could also be improved
for the binary algorithm, we guess that the upgraded chain
algorithm will outperform the binary algorithm except for
very small files.

4. Related work

There are a numerous tools for PC cloning mainly in the
“Microsoft Windows” environment, Ghost, being the
most famous one.
The Unix “ghost-like” software, CloneIT, g4u and Dolly
also use a floppy (or a dedicated hard disk partition) to
start the cloning process, thus are not adequate for large
sized cluster. Yet one could combine the quoted software
with a PXE-compliant boot system to provide a scalable

Figure 7

cloning system in the same way as Ka do.

It is worth noting that Ghost and Dolly respectively use a
multicast and a TCP chain protocol that are both available
in Ka.

BpBatch, Rembo and Beoboot [6] are non-open source
cloning tools. The latter tools have been used to install
large infrastructures. In addition, BpBatch provides a
scripting language to perform pre-installation
configuration.
SIS [12] is an operating system installation project whose
main objective is to define and maintain a rich set of
image "flavors".

As far as parallel commands are concerned, parallel
programming environment such as SCE [13] and Cplant
[5] provide a set of commands for managing a cluster
including file copying and process management. TACO
[12] is a general API for collective communication
operations. SUT [14] and C3 [2] which focus only on
parallel commands, do not provide, to our knowledge, the
same wide range of algorithms as Ka do for collective
operations or for operating system installation.
-SMCS

5. Conclusion

We have presented a toolkit for optimizing file
distribution on a large-size infrastructure. It provides both
the software for operating system installation and file
broadcasting based on multicast, chain and several tree-
structured algorithms. The toolkit should find a good
distribution process for various network architecture.
In the case of a switched network architecture, a chain
algorithm is combined with the use of an optimized
launcher. Broadcasting a file to hundred of nodes takes
not much more time than a single PC-to-PC file copy.

References

[1] C. Martin, O. Richard. Parallel launcher for clusters of
PC, submitted to World scientific
 [2] C3, Cluster Command & Control (C3) Tool Suite,
Submitted March 2001 for review to special issue of

PDCP (Parallel Distributed Computing Practices)
available at http://www.epm.ornl.gov/torc/C3/
 [3] Reliable Multicast
http://search.ietf.org/rfc/rfc3048.txt, January 2001
[4] V. Roca, ``On the Use of On-Demand Layer Addition
(ODL) with Multi-Layer Multicast Transmissions
Schemes'', 2nd International Workshop on Networked
Group Communication (NGC 2000), Stanford University,
California, USA, November 2000
[5] R. Brightwell L. A. Fisk, Parallel Application Launch
on Cplant, SC2001 technical paper, November 2001
 [6] BpBatch: http://www.bpbatch.org/
 [7] CloneIt
http://www.ferzkopp.net/Software/CloneIt/CloneIt.html
[8] Cluclo http://members.linuxstart.com/~flux/cluclo/
[9] Get4u http://www.feyrer.de/g4u/
[10] Dolly
http://www.cs.inf.ethz.ch/CoPs/patagonia/dolly.html
[11] SIS http://systemimager.sourceforge.net/
[12] J. Nolte and M. Sato and Y. Ishikawa, TACO --
Exploiting Cluster Networks for High-Level Collective
Operations, http://citeseer.nj.nec.com/417863.html
[13] P. Uthayopas, S. Phatanapherom, T. Angskun, S.
Sriprayoonsakul, SCE: A Fully Integrated Software Tool
for Beowulf Cluster System», Proceedings of Linux
Clusters: the HPC Revolution, National Center for
Supercomputing Applications (NCSA), University of
Illinois, Urbana, IL, June 25-27, 2001
[14] SUT “Unix Tools on Massively Parallel Processors”
William Gropp and Ewing Lusk
http://www.unix.mcs.anl.gov/sut/old/long2/long2.html
 [15] M. Bernaschi and G. Iannello. Collective
Communication Operations: Experimental Results vs.
Theory. Concurrency: Practice and Experience,
10(5):359--386, April 1998
[16]T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat,
and R. A. F. Bhoedjang. MAGPIE: MPI's Collective
Communication Operations for Clustered Wide Area
Systems. In Proc. Symposium on Principles and Practice
of Parallel
Programming (PPoPP), Atlanta, GA, May 1999
[17] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay,
K.E. Schauser, E. Santos, R. Subronomian, T. van Eicken,
LogP: Towards a Realistic Model of Parallel
Computation, Proc. of 4th ACM Symp.
on Pinciples and Practice of Parallel Programming, 1993
[18] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman. LogGP: Incorporating Long Messages into
the LogP Model --- One Step Closer Towards a Realistic
Model for Parallel Computation. In Proc. Symposium on
Parallel Algorithms and Architectures (SPAA), pages 95--
105, Santa Barbara, CA, July 1995.

	Introduction
	Operating system installation
	Initial boot process
	File system cloning
	Post-installation
	Tests

	File distribution
	Efficient process launching
	File broadcasting
	Mixed algorithms

	Related work
	Conclusion

