
Addressing Strategic Behavior in a Deployed Microeconomic Resource Allocator

Chaki Ng†, Philip Buonadonna∗, Brent N. Chun∗, Alex C. Snoeren‡, Amin Vahdat‡
†Harvard ∗Intel Research Berkeley ‡UCSD

Abstract
While market-based systems have long been proposed as so-
lutions for distributed resource allocation, few have been de-
ployed for production use in real computer systems. Towards
this end, we present our initial experience using Mirage, a mi-
croeconomic resource allocation system based on a repeated
combinatorial auction. Mirage allocates time on a heavily-
used 148-node wireless sensor network testbed. In particu-
lar, we focus on observed strategic user behavior over a four-
month period in which 312,148 node hours were allocated
across 11 research projects. Based on these results, we present
a set of key challenges for market-based resource allocation
systems based on repeated combinatorial auctions. Finally, we
propose refinements to the system’s current auction scheme
to mitigate the strategies observed to date and also comment
on some initial steps toward building an approximately strate-
gyproof repeated combinatorial auction.

1 Introduction
Market-based systems have long been proposed as solutions
for resource allocation in distributed systems including com-
putational Grids [2, 20], wide-area networking testbeds [9],
and peer-to-peer systems [17]. Yet, while the theoretical un-
derpinnings of market-based schemes have made significant
strides in recent years, practical integration of market-based
mechanisms into real computer systems and empirical obser-
vations of such systems under real workloads has remained
an elusive goal. Towards this end, we have designed, imple-
mented, and deployed a microeconomic resource allocation
system called Mirage [3] for scheduling testbed time on a 148-
node wireless sensor network (SensorNet) testbed at Intel Re-
search. The system, which employs a repeated combinatorial
auction [5, 14] to schedule allocations, has been in production
use for over four months and has scheduled over 312,148 node
hours across 11 research projects to date.

In designing and deploying Mirage, we had three primary
goals. First, we wanted to validate whether a market-based re-
source allocation scheme was necessary at all. An economic
problem only exists when resources are scarce. Therefore, a
key goal was to first measure both resource contention and the
range of underlying valuations users place on the resources
during periods of resource scarcity. Second, we wanted to ob-
serve how users would actually behave in a market-based en-
vironment. Much of economic theory is predicated on rational

user behavior, which forms the basis for motivating research
efforts such as strategyproof mechanism design [4, 6, 15, 16,
19]. With Mirage, we wanted to observe to what extent ra-
tionality held and in what ways users would attempt to strate-
gize and game the system. Finally, we wanted to identify what
other practical problems would emerge in a deployment of a
market based system. In this paper, we report briefly on our
first goal while focusing primarily on the second. The third is
left for future work.

Empirical results based on four-months of usage have val-
idated the key motivating factors in using an auction-based
scheme (i.e., significant resource contention and widely vary-
ing valuations) but have also pointed to real world observations
of strategic user behavior. In deploying Mirage, we made the
early decision to base the system on a repeated combinatorial
auction known not to be strategyproof. That is, self-interested
users could attempt to increase their personal gain, at the ex-
pense of others, by not revealing their true value to the sys-
tem. We made this decision mainly because designing a strat-
egyproof mechanism remains an open, challenging problem
and we wanted to deploy a working system and gain expe-
rience with real users to address our three goals in a timely
manner. Deploying a non-strategyproof mechanism also had
the benefit of testing rationality and seeing how and to what
extent users would try to game the system. The key contri-
bution of this paper is an analysis of such strategic behavior
as observed over a four-month time period and proposed re-
finements for mitigating such behavior en route to building an
approximately strategyproof repeated combinatorial auction.

The rest of this paper is organized as follows. In Section 2,
we present an overview of Mirage including high-level obser-
vations on usage over a four-month period. In Section 3, we
examine strategic user behavior, focusing on the four primary
types of strategies employed by users in the system. Based
on these results, Section 4 presents a set of key challenges for
market-based resource allocation systems based on repeated
combinatorial auctions. As a first step in addressing some of
these challenges, we describe refinements to Mirage’s current
auction scheme that mitigate the strategies observed to date
and also comment on some initial steps towards building an ap-
proximately strategyproof repeated combinatorial auction for
Mirage. Finally, in Section 5, we conclude the paper.



2 The Mirage System
SensorNet testbeds are a critical tool for developing and eval-
uating SensorNet technology in a controlled and instrumented
environment. As with many large-scale systems, however, re-
source management is a key problem given that it is not eco-
nomical for users to each build and operate their own testbed.
In Mirage [3], testbed resources are space-shared and allocated
using a repeated combinatorial auction in a closed virtual cur-
rency environment. Users compete for testbed resources by
submitting bids which specify resource combinations of in-
terest in space/time (e.g., “any 32 MICA2 motes for 8 hours
anytime in the next two days”) along with a maximum value
amount the user is willing to pay. A combinatorial auction is
then periodically run to determine the winning bids based on
supply and demand while maximizing aggregate utility deliv-
ered to users.

0

20

40

60

80

100

0 20 40 60 80 100 120

T
ot

al
 M

IC
A

2 
U

til
iz

at
io

n 
(%

)

Days since Dec 9, 2004

Figure 1: Testbed utilization for 97 MICA2 motes.

In Mirage, resources are allocated using a first-price com-
binatorial auction which clears every hour. In each round of
the auction, a rolling window of future testbed resources is
available for allocation with subsets of that window being re-
moved from the pool as resources get allocated. In our initial
deployment, we used a 72-hour window and deployed the sys-
tem on a testbed consisting of 148 nodes (97 MICA2 [1] and
51 MICA2DOT sensor nodes or “motes”). In each round of
the auction, users bid for subsets of resources available in the
current window. When the system is first brought online, a
full 148 node × 72 hour window is available, where each row
of the window represents the availability of a particular node
across time, and each column represents the availability of the
testbed for a given hour. The leftmost column of the window
represents node availability for the hour immediately follow-
ing the auction; these node/hours will never again be available
for auction. All other node/hours not allocated at this or previ-
ous auctions continue to be offered for sale at subsequent auc-
tions. In each subsequent round (i.e., every hour), portions of
the current window get allocated as bids are matched to avail-
able resources and a new rightmost 148 node × 1 hour col-
umn of resources rolls in and replaces the leftmost 148 node
× 1 hour column of resources which expires. There is no time

sharing of nodes: given limited local computation and com-
munication power, once a sensor is allocated to a user for a
particular time period, it is unavailable to all other users.

In Mirage, users place combinatorial bids specifying re-
source combinations of interest in space/time along with a
maximum value amount the user is willing to pay. More
specifically, a bid bi = (vi, si, ti, di, fmin, fmax, ni, oki) in-
dicates the user wants any combination of ni motes from
the set oki simultaneously for a duration of di hours (di ∈
{1, 2, . . . , 32}), a start time anywhere between si and ti, and
a radio frequency in the range [fmin, fmax].1 The user also is
willing to pay up to vi units of virtual currency for these re-
sources. In essence, each bid specifies in a succinct manner
what subsets of the resource window would serve as accept-
able resources that meet the user’s constraints and how impor-
tant the desired resource allocation is to the user.

We deployed Mirage on December 9, 2004 and the system
has been in continuous production use for over four months. In
the process, its lifetime has overlapped with several periods of
significant resource contention including the SIGCOMM ’05
and SenSys ’05 conference deadlines. Overall, the system has
18 research projects registered to use the system spanning a
variety of academic and commercial institutions. Of these,
11 have actively bid and received time on the system. As of
April 8, 2005, the system has received 322 bids, and allocated
312,148 node hours over the testbed’s 148 nodes.

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1 10 100

C
um

ul
at

iv
e 

fr
ac

tio
n 

of
 b

id
s

Bid value per node hour

U1
U2
U3
U4
U5
U6
U7

Figure 2: Bid value distributions by user.

As a measure of contention, Figure 1 shows the utilization
of the 97 MICA2 motes over the past four months. It depicts
periods of significant contention extending over multiple con-
secutive days, in particular near major deadlines.2 To quantify
user valuations for resources, Figure 2 plots distributions of
bid values per node hour for the seven most active users in
the system. This graph shows that user valuations for testbed
resources varied substantially, spanning over four orders of
magnitude. Valuations are also distributed relatively evenly

1The frequency constraints are used to schedule testbed allocations such
that allocations co-scheduled in time do not collide by using the same radio
frequency. In practice, distinct frequencies have not been a scarce resource.

2Results for the 51 MICA2DOT motes are similar and omitted for space.



across each order of magnitude, suggesting that these ranges
are not due to a few anomalous bids but rather to a wide range
of underlying user valuations for testbed resources. These
dual observations—significant resource contention and a wide
range of valuations—support the use of an auction, which is
designed precisely to harness such widely varying valuations
to compute an efficient and user utility-maximizing node allo-
cation.

Lastly, as another measure of resource contention and the
utility of driving resource allocation via user-specified valu-
ations, Figure 3 plots the median per-node clearing price for
both MICA2 and MICA2DOT motes over time. To compute
these prices, we price an allocated node-hour for a winning
bid with value v for n nodes for k hours as v/nk. Unallo-
cated node-hours are assigned a price of 0. For a given hour,
we examine all MICA2 motes and plot the median node-hour
price for that hour and do the same for MICA2DOT motes.
Of particular interest in this graph are the sequence of prices
from days 45–60 and days 105–120 (i.e., periods leading up
to conference deadlines). These sequences show that the value
of testbed resources, as measured by market prices for motes,
increases exponentially (logarithmic y-axis) during times of
peak contention. This suggests that allowing users to ex-
press valuations for resources to drive the resource allocation
process is important for making effective use of the testbed
(e.g., to distinguish important use from low priority activities).
However, it also suggests that users become exponentially des-
perate to acquire resources as deadlines approach. As it turns
out, it is precisely during these times that users will try their
hardest to game the system and, therefore, when the efficacy
of a market-based mechanism can be best evaluated.

1e-05

0.0001

0.001

0.01

0.1

1

10

0 20 40 60 80 100 120

V
al

ue
 p

er
 n

od
e 

ho
ur

Days since Dec 9, 2004

MICA2
MICA2DOT

Figure 3: Median node-hour market prices.

3 Observed Strategic Behavior
During the past four months of operation, Mirage has em-
ployed two distinct auction mechanisms and observed four
primary types of strategic behavior from users. The first auc-
tion mechanism, A1, was deployed from December 9, 2004 to
March 28, 2005. During this time period, we observed three
different types of strategic behavior (S1-S3), the most recent

of which (S3) resulted in significant gaming of the system. In
response to the impact of S3, we deployed a second mecha-
nism, A2, on March 29, 2005 (Day 111 in Figures 1 and 3).
While A2 mitigated or eliminated the known shortcomings of
A1—in particular the vulnerability strategy S3 exploited that
prompted the change in the first place—it was soon discovered
that A2 remained vulnerable to another strategy, S4, which
was predictably discovered and exploited by a motivated user
community. We are currently in the process of designing a
mechanism to address the weakness in A2 that is abused by
S4. Of course, ideally we would develop a provably strate-
gyproof mechanism. However, this remains an open research
problem for repeated combinatorial auctions.

In this section, we describe the two auction mechanisms A1
and A2, Mirage’s virtual currency policy, the four types of ob-
served strategic behavior S1–S4, and their impact on aggregate
utility delivered.

3.1 Auctions and Virtual Currency

Our first auction mechanism, A1 was a first-price, open-
bid (i.e., users can see all outstanding bids from competing
users) combinatorial auction that cleared every hour based on
a greedy algorithm. In each round of auction, the current set of
bids was sorted by value per node hour and bids were greedily
fit into the remaining portion of the current window of avail-
able resources. Like A1, our second auction, A2, was also
based on a greedy clearing algorithm. Its key differences were
that (i) it was a sealed-bid auction and (ii) it allocated resources
over a 148 node × 104 hour window with bid start times con-
strained to be within the next 72 hours (the reason for this will
become apparent when we discuss strategy S3).

In both auctions, winning bids from previous auctions were
publicly visible for price feedback and the same virtual cur-
rency policy was used. Our virtual currency policy assigns
two numbers to each user’s bank account: a baseline value and
a number of shares. When created, each bank account is ini-
tialized to its baseline value. Once funded, a user can then
begin to bid and acquire testbed resources through Mirage. In
each round of the auction, accounts for winning bids are deb-
ited and the proceeds are redistributed through a proportional
profit-sharing policy based on bank account share values. The
primary purpose of this policy is to reward users who refrain
from using the system during times of peak demand and pe-
nalize those who use resources aggressively during periods of
scarcity. These rewards result in transient bursts of credit and
are balanced by another mechanism, a savings tax, to prevent
idle users from sitting on large amounts of excess credit for-
ever (a “use it or lose it” policy). In our deployment, an ad-
ministrator set the virtual currency policy. Bank accounts for
external users were assigned baseline and shares value set to
1000, while bank accounts for internal users (U4 and U5) were
assigned larger allocations with baseline and share values set
to 2000.



3.2 Strategic Behavior

The following are descriptions of the four primary bidding
strategies observed over the past four-months.

S1: underbidding based on current demand. In A1, all out-
standing bids were publicly visible. Consequently, when users
would observe a lack of demand, some users would bid cor-
respondingly low amounts rather than their true values. For
example, one user would frequently bid 1 or 2 when no other
bids were present. While underbidding in the absence of com-
petition is not a problem per se, it does raise two issues. First,
if a seller was collecting revenue for profit, such bidding leads
to suboptimal outcomes for the seller. Second, should other
users enter competing bids before the auction clears, users will
need to refine their bids to allow the system to compute an allo-
cation that maximizes aggregate utility. This second problem
then leads to strategy S2.

S2: iterative bidding. Because users are allowed to mod-
ify their bids and A1 was an open auction, iteratively refining
one’s bid value in response to other users’ bid values should,
in theory, have no effect on who wins the auction; users with
higher valuations—who may also be underbidding—should
eventually outbid those with lower valuations after sufficient
iteration. The problem is that users do not behave this (ratio-
nal) way. Usability overhead matters: users in Mirage bid once
and perhaps modify their bid a second time. The end result is
that inefficiencies may arise since the auction may clear with
bid values that are understated. While bidding proxies that
automatically adjust user bids in response to other bids are ef-
fective in single-good auctions, it is unclear how such proxies
could be generally effective in a combinatorial auction with-
out actually implementing the same clearing algorithm used
by Mirage (which could be computationally expensive). In
summary, S1 and S2 both point toward the need for a strate-
gyproof auction mechanism in Mirage. In such an auction, a
user’s optimal strategy is always to bid truthfully the first time.
Thus, rational users will never underbid and iterative bidding
is unnecessary.

S3: rolling window manipulation. Unlike auctions for tan-
gible goods, resource allocation in computer systems funda-
mentally involves time, since sharing of resources implies that
a resource cannot be assigned to a given user/process forever.
In Mirage, we addressed the issue of time by selling resources
over a rolling window 72 hours into the future with users able
to bid for blocks 1, 2, . . . , or 32 hours in length. What we did
not anticipate, however, was what would happen when the en-
tire window of resources becomes fully allocated. In this sce-
nario, which was the norm near the recent SenSys ’05 dead-
line, the entire 148 node × 72 hour window is allocated. A
user bidding for, say, 32 hours thus needs to minimally wait
32 hours for 32 new 148 node × 1 hour columns of resources
to become available.

The problem here is that a user can game the system by ob-
serving other bids and simply requesting fewer hours. Since 16
columns will roll into the resource window before 32 columns,

a user bidding for 16 hours outbids a 32-hour bid independent
of each bid’s value because resources for the 32-hour bid are
not available when the auction clears. Of course, if other users
also begin bidding for 16 hours, this opportunity disappears
but then moves to durations shorter than 16 hours. In the limit,
all users bid for 1-hour blocks, thereby eliminating the possi-
bility of obtaining longer resource allocations which may be
critical to the underlying SensorNet experiment. In practice,
we observed this type of gaming push winning bid durations
down to 2 hours.

With rampant gaming of the system occurring through S3,
we responded by implementing and deploying auction A2.
As mentioned, a key difference of A2 compared to A1 is that
it allocates resources over a 104-hour window with bid start
times constrained to be within the next 72 hours. In expanding
the window and expanding (while still constraining) the range
of start times, A2 eliminates strategy S3. When the entire
148 node × 72 hour window is allocated, a pending 16-hour
bid and a pending 32-hour bid will both have their first
opportunity for an allocation when 32 new columns become
available. At that point, both the 16-hour bid and the 32-hour
bid will have an opportunity to obtain an allocation. Such
allocations are then determined by the usual greedy clearing
algorithm.

Time Project Value #Nodes #Hours
04-02-2005 03:58:04 U2 1590 97 32
04-02-2005 05:05:45 U1 5 24 4
04-02-2005 05:28:23 U1 130 40 4
04-02-2005 06:12:12 U1 1 33 4

Table 1: Strategy S4 on 97 MICA2 motes.

S4: auction sandwich attack. While A2 eliminated S3 and
significantly reduced S1 and S2, it still retained a weakness
of A1 that had yet to be discovered and exploited. In the auc-
tion sandwich attack, a user exploits two pieces of information:
(i) historical information on previous winning bids to estimate
the current workload and (ii) the greedy nature of the auction
clearing algorithm. In this particular case, a user employs a
strategy of splitting a bid for 97 MICA2 motes across several
bids, only one of which has a high value per node hour. Since
the high value bid is likely to win due to the greedy nature of
the auction clearing algorithm and since all other users at the
time were all requesting 97 motes (based on the historical in-
formation and the fact that the SenSys ’05 deadline was immi-
nent requiring experiments at scale), no other bids could back-
fill the remaining slots; the user’s remaining bids would then
fit those slots at a low price. An actual occurrence is shown in
Table 1. Here, user U1 uses three bids, the main one being a
bid with value 130 (value per node hour 130/(4 ·40) = 0.813)
which is used to outbid a bid with value 1590 (value per node
hour 1590/(32 ·97) = 0.0512). Once the high valued 40-node
bid has occupied its portion of the resource window, no other
97-node bids can be matched. Consequently, the user backfills



on the remaining 57 nodes using two bids: a 24-node bid and
a 33-node bid, both at low valuations.

4 Challenges and Refinements

Designing an appropriate auction mechanism is key to ad-
dressing the above strategies. Specifically, our goals for such
a mechanism include: (i) strategyproofness, (ii) computational
tractability, and (iii) optimal allocation. The Generalized Vick-
rey Auction (GVA) [8, 18] is the only known combinatorial
mechanism that provides both strategyproofness and optimal
allocation. However, it also is computationally intractable as
it is NP-hard to calculate the allocations as well as individual
payments. Other VCG-based mechanisms exist that replace
the allocation algorithms in GVA with approximate ones to
provide tractability. In this case, however, strategyproofness is
no longer available [16]. These goals are in conflict for VCG
and in general[10]. We thus must make certain trade-offs.

With this in mind, we now present a two-phase roadmap for
improving Mirage: (i) short-term improvements to the current
mechanism that mitigate the effects of existing strategies; and
(ii) designing a new mechanism that approximately achieves
our three goals simultaneously.

4.1 Ongoing Improvements

Our first improvement is a mixed-integer programming (MIP)
formulation as an alternative to the greedy algorithm. This
is aimed directly at eliminating strategy S4. While the MIP
does not provide strategyproofness, it is able to compute
approximately-optimal allocations. Like the GVA, however,
the MIP is computationally demanding and thus careful for-
mulation of the MIP and optimizations based on the observed
workloads from Mirage will be required to ensure timely clear-
ing of the auction. Our first step is to test and optimize
our MIP-based algorithm on auction data from the past four
months. We can then run both the MIP alongside the greedy
algorithm in parallel and select the higher quality result each
time the auction clears.

Second, we can also augment the auction with additional
rules and fees to further mitigate strategic behavior. To elimi-
nate S4, two possibilities are to restrict each user to having ei-
ther one outstanding bid at a time or to mandate that users are
not allowed to have multiple overlapping allocations in time.
To mitigate S1 and S2, we could add transaction fees. With
such fees in place, a user who understates a bid and intends
to iteratively refine it will have a disincentive to do so given
that each iteration incurs a fee. Finally, another approach to
eliminating S4 is to modify the greedy algorithm such that if
users do have bids whose allocations could overlap in time,
then those potential allocations are considered from lowest to
highest value per node hour. In effect, this allows bids for
overlapping allocations but creates a disincentive for users to
place such bids.

4.2 Towards a Strategyproof Mechanism

Clearly, we need to evaluate our goals and identify where we
can make trade-offs in designing a new mechanism. Computa-
tional tractability is a fundamental requirement for operational
reasons. Strategyproofness or, minimally, making the system
hard to manipulate is also key given the behavior we have ob-
served. Finally, our mechanism should compute near-optimal
allocations given our compute time budget.

Among the potential mechanisms we can extend, the
LOS [12] scheme seems to be a good starting point. It is a fast
algorithm as the allocation rule is a greedy mechanism, rank-
ing bids with some “norm” such as value per node hour. The
advantage of LOS is its special payment scheme that is tightly
linked to the greedy allocation. Essentially, a winner i pays the
“norm” of the first bidder denied access times the amount of
units (i.e. node hours) that i won. This feature makes it strate-
gyproof. The main downside, however, is that it assumes users
are single-minded, meaning that each bidder only cares about
a specific set of goods (e.g., a specific list of nodes for specific
durations) and they do not value anything else. Unfortunately,
this is highly restrictive and contradicts what Mirage currently
offers its users, namely the ability to select any subset of nodes
for any slots and submit multiple bids. Thus, LOS is vulner-
able to S4 and to avoid it we must find a way to extend LOS
and its strategyproof property to satisfy complex-bidders.

Realistically, even with a strategyproof LOS scheme for
complex bidders there will likely be further strategies we have
yet to encounter and that we should consider in our design.
For instance, our discussion so far focuses on strategyproof-
ness within a single auction. Across auctions, however, there
may be temporal strategies that are possible. For example, in a
particular auction, suppose the highest bidder wants all nodes
and pays, using GVA payment scheme for simplicity, the next
bidder’s value. This same bidder may be better off by waiting
until the next auction, if the user can still win and face bidders
that have even lower values. In this case, the user will gain
additional utility due to a lower payment. This, however, may
create various problems as total revenue, total value, as well
as allocative efficiency across the auctions may be adversely
affected.

There are two techniques we can use to address temporal
strategies. The first is a “wrapper” scheme such as the one em-
ployed by Virtual Worlds (VW) [13] that makes sequences of
individually strategyproof auctions (e.g., LOS) strategyproof.
What VW does is, after bidder i wins, it tracks what would
have happened if i had submitted in a subsequent auction in-
stead. Specifically, it tracks what i would have paid in all fol-
lowing auctions during i’s patience (i.e., the maximum time
i is willing to wait for an allocation) and keeps track of the
lowest possible payment. i will instead be charged the low-
est payment and will thus have no incentive to temporally
game the system. Alternatively, the new class of online mech-
anisms[7, 11] assumes dynamic arrival and departure of bid-
ders and does not hold auctions at fixed intervals. Instead,



the mechanism is a continuous scheme that accepts bids as
they arrive and makes allocation decisions immediately, thus
removing any need to “clear” auctions. The challenge is that
the current literature is still restricted to non-combinatorial set-
tings.

5 Conclusion
Despite initially using a repeated combinatorial auction known
not to be strategyproof, Mirage has shown significant promise
as a vehicle for SensorNet testbed allocation. The dual ob-
servations of significant resource contention and a wide range
of valuations suggest that auction-based schemes can deliver
large improvements in aggregate utility when compared to tra-
ditional approaches such as proportional share allocation or
batch scheduling. Fully realizing these gains, however, re-
quires addressing key problems in strategyproof mechanism
design and combinatorial optimization. The temporal nature
of computational resources and the combinatorial resource de-
mands of distributed applications adds an additional layer of
complexity. Nevertheless, we remain optimistic and believe
that a pragmatic mix of theory and practice combined with iter-
ative improvements on real deployments provides one promis-
ing avenue toward bringing market-based resource allocation
into the mainstream.

References
[1] Crossbow corporation. http://www.xbow.com.

[2] BUYYA, R., ABRAMSON, D., AND GIDDY, J. Nim-
rodG: An Architecture of a Resource Management and
Scheduling System in a Global Computational Grid. In
Proceedings of the 4th International Conference on High
Performance Computing in Asia-Pacific Region (May
2000).

[3] CHUN, B. N., BUONADONNA, P., AUYOUNG, A., NG,
C., PARKES, D. C., SHNEIDMAN, J., SNOEREN, A. C.,
AND VAHDAT, A. Mirage: A Microeconomic Resource
Allocation System for SensorNet Testbeds. In Proceed-
ings of the 2nd IEEE Workshop on Embedded Networked
Sensors (May 2005).

[4] CLARKE, E. H. Multipart pricing of public goods. Pub-
lic Choice 2 (1971), 19–33.

[5] DE VRIES, S., AND VOHRA, R. V. Combinatorial Auc-
tions: A Survey. INFORMS Journal on Computing 15
(2003), 284–309.

[6] GROVES, T. Incentives in Teams. Econometrica 41
(1973), 617–631.

[7] HAJIAGHAYI, M. T., KLEINBERG, R., AND PARKES,
D. C. Adaptive Limited-Supply Online Auctions. In
Proceedings of the 5th ACM Conference on Electronic
Commerce (2004).

[8] JACKSON, M. O. Mechanism Theory. In The Encyclo-
pedia of Life Support Systems. EOLSS Publishers, 2000.

[9] LAI, K., HUBERMAN, B. A., AND FINE, L. Tycoon: A
Distributed Market-based Resource Allocation System.
Tech. rep., Hewlett Packard, 2004.

[10] LAVI, R., MU’ALEM, A., AND NISAN, N. Towards a
Characterization of Truthful Combinatorial Auctions. In
Proceedings of the 44th Annual Symposium on Founda-
tions of Computer Science (2003).

[11] LAVI, R., AND NISAN, N. Competitive Analysis of In-
centive Compatible On-line Auctions. In Proceedings
of the 2nd ACM Conference on Electronic Commerce
(2000), pp. 233–241.

[12] LEHMANN, D., O’CALLAGHAN, L. I., AND SHOHAM,
Y. Truth Revelation in Approximately Efficient Combi-
natorial Auctions. Journal of the ACM 49, 5 (September
2002), 577–602.

[13] NG, C., PARKES, D. C., AND SELTZER, M. Virtual
Worlds: Fast and Strategyproof Auctions for Dynamic
Resou rce Allocation. In Proceedings of the 4th ACM
Conference on Electronic Commerce (2003).

[14] NISAN, N. Bidding and Allocation in Combinatorial
Auctions. In Proceedings of the 2nd ACM Conference
on Electronic Commerce (2000).

[15] NISAN, N., AND RONEN, A. Algorithmic Mechanism
Design. In Proceedings of the 31st Annual ACM Sympo-
sium on Theory of Computing (May 1999).

[16] NISAN, N., AND RONEN, A. Computationally Feasi-
ble VCG Mechanisms. In Proceedings of the 2nd ACM
Conference on Electronic Commerce (October 2000).

[17] REGEV, O., AND NISAN, N. The POPCORN Market –
an Online Market for Computational Resources. In Pro-
ceedings of the 1st International Conference on Informa-
tion and Computation Economies (October 1998).

[18] VARIAN, H., AND MACKIE-MASON, J. K. Generalized
Vickrey auctions. Tech. rep., University of Michigan,
1995.

[19] VICKREY, W. Counterspeculation, Auctions and Com-
petitive Sealed Tenders. Journal of Finance (1961), 8–
37.

[20] WOLSKI, R., PLANK, J. S., BREVIK, J., AND BRYAN,
T. Analyzing Market-based Resource Allocation Strate-
gies for the Computational Grid. International Journal of
High Performance Computing Applications (2001), 258–
281.


