
Curator: Self-Managing Storage for Enterprise Clusters
Ignacio Cano∗w, Srinivas Aiyarn, Varun Aroran, Manosiz Bhattacharyyan, Akhilesh Chagantin,

Chern Cheahn, Brent Chunn, Karan Guptan, Vinayak Khotn and Arvind Krishnamurthyw

wUniversity of Washington
{icano,arvind}@cs.washington.edu

nNutanix Inc.
curator@nutanix.com

Abstract
Modern cluster storage systems perform a variety of
background tasks to improve the performance, availabil-
ity, durability, and cost-efficiency of stored data. For
example, cleaners compact fragmented data to generate
long sequential runs, tiering services automatically mi-
grate data between solid-state and hard disk drives based
on usage, recovery mechanisms replicate data to improve
availability and durability in the face of failures, cost sav-
ing techniques perform data transformations to reduce
the storage costs, and so on.

In this work, we present Curator, a background
MapReduce-style execution framework for cluster man-
agement tasks, in the context of a distributed storage sys-
tem used in enterprise clusters. We describe Curator’s
design and implementation, and evaluate its performance
using a handful of relevant metrics. We further report ex-
periences and lessons learned from its five-year construc-
tion period, as well as thousands of customer deploy-
ments. Finally, we propose a machine learning-based
model to identify an efficient execution policy for Cura-
tor’s management tasks that can adapt to varying work-
load characteristics.

1 Introduction
Today’s cluster storage systems embody significant func-
tionality in order to support the needs of enterprise clus-
ters. For example, they provide automatic replication
and recovery to deal with faults, they support scaling,
and provide seamless integration of both solid-state and
hard disk drives. Further, they support storage workloads
suited for virtual machines, through mechanisms such as
snapshotting and automatic reclamation of unnecessary
data, as well as perform space-saving transformations
such as dedupe, compression, erasure coding, etc.

Closer examination of these tasks reveals that much of
their functionality can be performed in the background.
Based on this observation, we designed and implemented
a background self-managing layer for storage in enter-
prise clusters. As part of this work, we addressed a set
of engineering and technical challenges we faced to re-
alize such a system. First, we needed an extensible, flex-
ible, and scalable framework to perform a diverse set of
∗This work was done while the author was interning at Nutanix Inc.

tasks in order to maintain the storage system’s health
and performance. To that end, we borrowed technolo-
gies that are typically used in a different domain, namely
big data analytics, and built a general system comprised
of two main components: 1) Curator, a background ex-
ecution framework for cluster management tasks, where
all the tasks can be expressed as MapReduce-style op-
erations over the corresponding data, and 2) a replicated
and consistent key-value store, where all the important
metadata of the storage system is maintained. Second,
we needed appropriate synchronization between back-
ground and foreground tasks. We addressed these syn-
chronization issues by having the background daemon
act as a client to the storage system, and we let the lat-
ter handle all the synchronization. Third, minimal in-
terference with foreground tasks was required. We ac-
complished this by using task priorities and scheduling
heuristics that minimize overheads and interference. The
resulting framework let us implement a variety of back-
ground tasks that enable the storage system to continu-
ously perform consistency checks,1 and be self-healing
and self-managing.

We performed this work in the context of a commer-
cial enterprise cluster product developed by Nutanix.2

We developed the system over a period of five years,
and have deployed it on thousands of enterprise clusters.
We report on the performance of the system and experi-
ences gleaned from building and refining it. We found
that Curator performs garbage collection and replication
effectively, balances disks, and makes storage access ef-
ficient through a number of optimizations. Moreover, we
realized that the framework was general enough to incor-
porate a wide variety of background transformations as
well as simplified the construction of the storage system.

Nonetheless, we noticed that our heuristics do not nec-
essarily work well in all clusters as there is significant
heterogeneity across them. Thus, we recently started de-
veloping a framework that uses machine learning (ML)
for addressing the issues of when should these back-
ground management tasks be performed and how much
work they should do. The ML-based approach has two

1This eliminates heavyweight fsck-like operations at recovery time.
2Nutanix is a provider of enterprise clusters. For more details refer

to http://www.nutanix.com.

http://www.nutanix.com

key requirements: 1) high predictive accuracy, and 2) the
ability to learn or adapt to (changing) workload charac-
teristics. We propose using reinforcement learning, in
particular, the Q-learning algorithm. We focus our initial
efforts on the following tiering question: how much data
to keep in SSDs and HDDs? Empirical evaluation on five
simulated workloads confirms the general validity of our
approach, and shows up to∼20% latency improvements.

In summary, our main contributions are:

• We provide an extensive description of the design and
implementation of Curator, an advanced distributed
cluster background management system, which per-
forms, among others, data migration between storage
tiers based on usage, data replication, disk balancing,
garbage collection, etc.

• We present measurements on the benefits of Curator
using a number of relevant metrics, e.g., latency, I/O
operations per second (IOPS), disk usage, etc., in a
contained local environment as well as in customer de-
ployments and internal corporate clusters.

• Finally, we propose a model, based on reinforcement
learning, to improve Curator’s task scheduling. We
present empirical results on a storage tiering task that
demonstrate the benefits of our solution.

2 Distributed Storage for Enterprise Clus-
ters

We perform our work in the context of a distributed stor-
age system designed by Nutanix for enterprise clusters.
In this section, we provide an overview of the software
architecture, the key features provided by the storage
system, and the data structures used to support them.
Herein, we present the necessary background informa-
tion for understanding the design of Curator.

2.1 Cluster Architecture

The software architecture is designed for enterprise clus-
ters of varying sizes. Nutanix has cluster deployments at
a few thousand different customer locations, with cluster
sizes typically ranging from a few nodes to a few dozens
of nodes. Cluster nodes might have heterogeneous re-
sources, since customers add nodes based on need. The
clusters support virtualized execution of (legacy) appli-
cations, typically packaged as VMs. The cluster man-
agement software provides a management layer for users
to create, start, stop, and destroy VMs. Further, this soft-
ware automatically schedules and migrates VMs taking
into account the current cluster membership and the load
on each of the individual nodes. These tasks are per-
formed by a Controller Virtual Machine (CVM) running
on each node in the cluster.

The CVMs work together to form a distributed sys-
tem that manages all the storage resources in the clus-

ter. The CVMs and the storage resources that they man-
age provide the abstraction of a distributed storage fabric
(DSF) that scales with the number of nodes and provides
transparent storage access to user VMs (UVMs) running
on any node in the cluster. Figure 1 shows a high-level
overview of the cluster architecture.

Applications running in UVMs access the distributed
storage fabric using legacy filesystem interfaces (such
as NFS, iSCSI, or SMB). Operations on these legacy
filesystem interfaces are interposed at the hypervisor
layer and redirected to the CVM. The CVM exports one
or more block devices that appear as disks to the UVMs.
These block devices are virtual (they are implemented by
the software running inside the CVMs), and are known as
vDisks. Thus, to the UVMs, the CVMs appear to be ex-
porting a storage area network (SAN) that contains disks
on which the operations are performed.3 All user data
(including the operating system) in the UVMs resides
on these vDisks, and the vDisk operations are eventu-
ally mapped to some physical storage device (SSDs or
HDDs) located anywhere inside the cluster.

Although the use of CVMs introduces an overhead in
terms of resource utilization,4 it also provides important
benefits. First, it allows our storage stack to run on any
hypervisor. Second, it enables the upgrade of the storage
stack software without bringing down nodes. To support
this feature, we implemented some simple logic at the
hypervisor-level to effectively multi-path its I/O to an-
other CVM in the cluster that is capable of serving the
storage request. Third, it provides a clean separation of
roles and faster development cycles. Building a complex
storage stack in the hypervisor (or even the kernel) would
have severely impacted our development speed.

2.2 Storage System and Associated Data Structures

We now describe the key requirements of the DSF and
how these requirements influence the data structures used
for storing the metadata and the design of Curator.

R1 Reliability/Resiliency: the system should be able to
handle failures in a timely manner.

R2 Locality preserving: data should be migrated to the
node running the VM that frequently accesses it.

R3 Tiered Storage: data should be tiered across SSDs,
hard drives, and the public cloud. Further, the SSD
tier should not merely serve as a caching layer for hot
data, but also as permanent storage for user data.

R4 Snapshot-able: the system should allow users to
quickly create snapshots for greater robustness.

3Unlike SAN/NAS and other related solutions (e.g., OneFS [15],
zFS [34], GlusterFS [18], LustreFS [39], GPFS [36]), the cluster nodes
serve as both VM compute nodes as well as storage nodes.

4We are currently exploring some alternatives to reduce such over-
head, e.g., pass-through drivers so that the CVMs can handle the disk
I/O directly, RDMA to move replication data, etc.

Figure 1: Cluster architecture and the Distributed Storage Fabric. UVMs ac-
cess the storage distributed across the cluster using CVMs.

Figure 2: Snapshotting and copy-on-write up-
date to snapshotted extents.

R5 Space efficient: the system should achieve high stor-
age efficiency while supporting legacy applications
and without making any assumptions regarding file
sizes or other workload patterns.

R6 Scalability: the throughput of the system should
scale with the number of nodes in the system.

The above set of requirements manifest in our system
design in two ways: (a) the set of data structures that we
use for storing the metadata, and (b) the set of manage-
ment tasks that will be performed by the system. We dis-
cuss the data structures below and defer the management
tasks performed by Curator to §3.2.

Each vDisk introduced in §2.1 corresponds to a virtual
address space forming the individual bytes exposed as a
disk to user VMs. Thus, if the vDisk is of size 1 TB, the
corresponding address space maintained is 1 TB. This
address space is broken up into equal sized units called
vDisk blocks. The data in each vDisk block is physically
stored on disk in units called extents. Extents are writ-
ten/read/modified on a sub-extent basis (a.k.a. slice) for
granularity and efficiency. The extent size corresponds
to the amount of live data inside a vDisk block; if the
vDisk block contains unwritten regions, the extent size
is smaller than the block size (thus satisfying R5).

Several extents are grouped together into a unit called
an extent group. Each extent and extent group is assigned
a unique identifier, referred to as extentID and extent-
GroupID respectively. An extent group is the unit of
physical allocation and is stored as a file on disks, with
hot extent groups stored in SSDs and cold extent groups
on hard drives (R3). Extents and extent groups are dy-
namically distributed across nodes for fault-tolerance,
disk balancing, and performance purposes (R1, R6).

Given the above core constructs (vDisks, extents, and
extent groups), we now describe how our system stores
the metadata that helps locate the actual content of each
vDisk block. The metadata maintained by our system
consists of the following three main maps:

• vDiskBlock map: maps a vDisk and an offset (to iden-
tify the vDisk block) to an extentID. It is a logical map.

• extentID map: maps an extent to the extent group that
it is contained in. This is also a logical map.

• extentGroupID map: maps an extentGroupID to the
physical location of the replicas of that extentGroupID
and their current state. It is a physical map.

Here are a few implications regarding the aforemen-
tioned data structures. Multiple vDisks created through
snapshots can share the same extent. The vDiskBlock
map of a snapshot can either directly point to an ex-
tent shared with a prior snapshot or have a missing en-
try, in which case the vDiskBlock map of the previous
snapshot is consulted. This facility allows for instanta-
neous creation of snapshots, i.e., we can create an empty
vDiskBlock map entry and have it point to the previous
snapshot for all of its unfilled entries (R4). At the same
time, it enables a later optimization of metadata lookup
using lazy filling of the missing entries (§3.2.4). When a
vDisk block is updated on the new snapshot, a new ex-
tent is created to hold the updated data. Figure 2 shows
an example in which vDisk 1 is created as a snapshot and
its vDiskBlock map has already been populated with the
correct pointers to the corresponding extents (left por-
tion). Later it is updated to point to a new extent upon an
update to one of its vDisk blocks (right portion).

The level of indirection introduced by the extentID
map allows efficient updates whenever data from one ex-
tent group is relocated to another (e.g., to optimize ac-
cess), as it is a single place in which we store the phys-
ical extentGroupID in which the extent is located (thus
aiding R2, R3).

Finally, a set of management operations can be per-
formed by only consulting the extentGroupID map. For
example, we can detect (and repair) if the number of
replicas for a given extentGroupID falls under certain
threshold by only accessing this map – the logical maps
will remain untouched – thus addressing R1.

Overall, the resulting data structures set us up to per-
form the various management tasks described in §3.2 in
an efficient and responsive manner.

3 Curator
Curator is the cluster management component responsi-
ble for managing and distributing various storage man-
agement tasks throughout the cluster, including continu-
ous consistency checking, fault recovery, data migration,
space reclamation, and many others. In this section, we

describe Curator’s architecture (§3.1), the tasks it per-
forms (§3.2), and the policies under which those tasks are
executed (§3.3). Finally, we demonstrate its value with a
set of empirical results (§3.4), and share our experiences
and lessons learned from building Curator (§3.5).

3.1 Curator Architecture

Curator’s design is influenced by the following consider-
ations. First, it should scale with the amount of storage
served by the storage system and cope with heterogene-
ity in node resources. Second, Curator should provide
a flexible and extensible framework that can support a
broad class of background maintenance tasks. Third, Cu-
rator’s mechanisms should not interfere with nor com-
plicate the operations of the underlying storage fabric.
Based on these considerations, we designed a system
with the following key components and/or concepts:
Distributed Metadata: The metadata (i.e., the maps dis-
cussed in the previous section) is stored in a distributed
ring-like manner, based on a heavily modified Apache
Cassandra [22], enhanced to provide strong consistency
for updates to replicated keys. The decision behind hav-
ing the metadata distributed lies in the fact that we do not
want the system to be bottlenecked by metadata opera-
tions. Paxos [23] is utilized to enforce strict consistency
in order to guarantee correctness.
Distributed MapReduce Execution Framework: Curator
runs as a background process on every node in the cluster
using a master/slave architecture. The master is elected
using Paxos, and is responsible for task and job dele-
gation. Curator provides a MapReduce-style infrastruc-
ture [10] to perform the metadata scans, with the master
Curator process managing the execution of MapReduce
operations. This ensures that Curator can scale with the
amount of cluster storage, adapt to variability in resource
availability across cluster nodes, and perform efficient
scans/joins on metadata tables.5

Although our framework bears resemblance to some
data-parallel engines (e.g., Hadoop, Spark), the reason
behind writing our own instead of re-purposing an ex-
isting one was two-fold: 1) efficiency, as most of these
open-source big data engines are not fully optimized to
make a single node or a small cluster work efficiently,6 a
must in our case, and 2) their requirement of a distributed
storage system (e.g., HDFS), a recursive dependence that
we did not want to have in our clustered storage system.
Co-design of Curator with Underlying Storage System:
The distributed storage fabric provides an extended API
for Curator, including but not limited to the following
low-level operations: migrate an extent from one extent

5Note that any metadata stored in a distributed key-value store
should be able to utilize this MapReduce framework.

6They assume they will have enough compute as their deployments
tend to scale out.

group to another, fix an extent group so that it meets the
durability and consistency requirements, copy a block
map from one vDisk to another, and perform a data trans-
formation on an extent group. Curator only performs op-
erations on metadata, and gives hints to an I/O manager
service in the storage system to act on the actual data.
It is up to the storage system to follow Curator’s advice,
e.g., it may disregard a suggestion of executing a task
due to heavy load or if a concurrent storage system oper-
ation has rendered the operation unnecessary.7 This ap-
proach also eliminates the need for Curator to hold locks
on metadata in order to synchronize with the foreground
tasks; concurrent changes only result in unnecessary op-
erations and does not affect correctness.
Task Execution Modes and Priorities: During a
MapReduce-based scan, the mappers and reducers are re-
sponsible for scanning the metadata in Cassandra, gener-
ating intermediate tables, and creating synchronous and
asynchronous tasks to be performed by the DSF. Syn-
chronous tasks are created for fast operations (e.g., delete
a vDisk entry in the vDiskBlock metadata map) and are
tied to the lifetime of the MapReduce job. Conversely,
asynchronous tasks are meant for heavy operations (e.g.,
dedupe, compression, and replication) and are sent to the
master periodically, which batches them, and sends them
to the underlying storage system for later execution (with
throttling enabled during high load). These tasks are not
tied to the lifetime of the MapReduce job. Note that al-
though these tasks are generated based on a cluster-wide
global view using MapReduce-based scans, their execu-
tion is actually done in the individual nodes paced at a
rate suitable to each node’s workload.8 In other words,
we compute what tasks need to be performed in a bulk-
synchronous manner, but execute them independently (in
any order) per node.

3.2 Curator Management Tasks

In this section, we describe how the Curator components
work together to perform four main categories of tasks.
Table 2 in Appendix A includes a summary of the cate-
gories, tasks, and metadata maps touched by each of the
tasks.

3.2.1 Recovery Tasks

Disk Failure/Removal (DF) and Fault Tolerance (FT):
In the event of a disk or node failure, or if a user sim-
ply wants to remove/replace a disk, Curator receives a
notification and starts a metadata scan. Such a scan

7Curator makes sure that the I/O manager knows the version of
metadata it based its decision on. The I/O manager checks the validity
of the operations based on metadata timestamps (for strong consistency
tasks like Garbage Collection) or last modified time (for approximate
tasks such as Tiering).

8The rate depends on the CPU/disk bandwidth available at each
node.

finds all the extent groups that have one replica on the
failed/removed/replaced node/disk and notifies the un-
derlying storage system to fix these under-replicated ex-
tent groups to meet the replication requirement. This is
handled by the storage system as a critical task triggered
by a high-priority event, which then aims to reduce the
time that the cluster has under-replicated data. Note that
these tasks require access to just the extentGroupID map
and benefit from the factoring of the metadata into sepa-
rate logical and physical maps.

3.2.2 Data Migration Tasks

Tiering (T): This task moves cold data from a higher stor-
age tier to a lower tier, e.g., from SSD to HDD, or from
HDD to the public cloud. Curator is only involved in
down migration, not up, i.e., it does not migrate data
from HDD to SSD, or from the public cloud to HDD. Up
migration, on the other hand, is done by the DSF upon
repeated access to hot data. Taken together, the actions
of Curator and DSF aim to keep only the hottest data in
the fastest storage tiers in order to reduce the overall user
access latency.

This task is costly as it involves actual data movement,
not just metadata modifications. Curator computes the
“coldness” of the data during a metadata scan, and noti-
fies the DSF to perform the actual migration of the cold-
est pieces. The coldness is computed based on least re-
cently used (LRU) metrics. The cold data is identified
by the modified time (mtime) and access time (atime),
retrieved during a scan. Both mtime (write) and atime
(read) are stored in different metadata maps. The former
is located in the extentGroupID map, whereas the lat-
ter resides in a special map called extentGroupIDAccess
map. This latter access map was especially created to
support eventual consistency for non-critical atime data
(in contrast to the extentGroupID map’s strict consis-
tency requirements) and thereby improve access perfor-
mance. As a consequence of being stored in separate
maps, the mtime and atime of an extent group might
be located in different nodes, therefore, communication
may be required to combine these two attributes.

In order to compute the “coldness” of the data, a
MapReduce job is triggered to scan the aforementioned
metadata maps. The map tasks emit the extentGroupID
as key, and the mtime (or atime) as value. The re-
duce tasks perform a join-like reduce based on the
extentGroupID key. The reduce tasks generate the
(egid,mtime,atime) tuples for different extent groups
and sort these tuples to find the cold extent groups. Fi-
nally, the coldest extent groups are sent to the DSF for
the actual data migration.

Disk Balancing (DB): Disk Balancing is a task that
moves data within the same storage tier, from high usage
disks to low usage ones. The goal is to bring the usage

of disks within the same tier, e.g., the cluster SSD tier, as
close as possible to the mean usage of the tier. This task
not only reduces the storage tier imbalance, but also de-
creases the cost of replication in the case of a node/disk
failure. To minimize unnecessary balancing operations,
Curator does not execute the balancing if the mean usage
is low, even if the disk usage spread is high. Further, in
case it executes the balancing, as with Tiering, it only at-
tempts to move cold data. The MapReduce scans identify
unbalanced source and target disks, together with cold
data, and notifies the storage fabric to perform the actual
migration of extent groups.

3.2.3 Space Reclamation Tasks

Garbage Collection (GC): There are many sources of
garbage in the storage system, e.g., when an extent is
deleted but the extent group still has multiple live ex-
tents and cannot be deleted, garbage due to wasting pre-
allocated larger disk spaces on extent groups that be-
came immutable and did not use all of the allocated
quota, when the compression factor for an extent group
changes, etc. GC increases the usable space by reclaim-
ing garbage and reducing fragmentation. It does so in
three ways:

• Migrate Extents: migrate live extents to a new extent
group, delete the old extent group, and then reclaim
the old extent group’s garbage. It is an expensive op-
eration as it involves data reads and writes. There-
fore, Curator performs a cost-benefit analysis per ex-
tent group and chooses for migration only the extent
groups where the benefit (amount of dead space in the
extent group) is greater than the cost (sum of space of
live extents to be migrated).

• Pack Extents: try to pack as many live extents as pos-
sible in a single extent group.

• Truncate Extent Groups: reclaim space by truncating
extent groups, i.e., reducing their size.

Data Removal (DR): The data structures introduced
in §2.2 are updated in such a way that there cannot be
dangling pointers, i.e., there cannot be a vDisk pointing
to an extent that does not exist, or an extent pointing to
an extent group that does not exist. However, there can
be unreachable data, e.g., an extent that is not referenced
by any vDisk, or an extent group that is not referenced
by any extent. These could be due to the side-effects
of vDisk/snapshot delete operations or a consequence of
failed DSF operations.

In DSF, extent groups are created first, then extents,
and finally vDisks. For removal, the process is back-
wards; unused vDisks are removed first, then the extents,
and finally the unreferenced extent groups. The DR task
performs this removal process in stages (possibly in suc-
cessive scans), and enables the reclamation of unused

space in the system.9

3.2.4 Data Transformation Tasks

Compression (C) and Erasure Coding (EC): Curator
scans the metadata tables and flags an extent group as
a candidate for compression/coding if the current com-
pression of the extent group is different from the desired
compression type or if the extent group is sufficiently
cold.

Once Curator identifies the extent groups (thus ex-
tents) for compression/coding, it sends a request to the
DSF, which performs the actual transformation by mi-
grating the extents. The main input parameters of this
request are the set of extents to be compressed (or mi-
grated), and the extentGroupID into which these extents
will be migrated. If the latter is not specified, then a new
extent group is created. This API allows us to pack ex-
tents from multiple source extent groups into a single ex-
tent group. Also, instead of always creating a new extent
group to pack the extents, Curator can select an existing
extent group and pack more extents into it. The target
extent groups are also identified using MapReduce scans
and sorts.

Deduplication (DD): Dedupe is a slightly different data
transformation, as it involves accessing other metadata
maps. During a scan, Curator detects duplicate data
based on the number of copies that have the same pre-
computed fingerprint, and notifies the DSF to perform
the actual deduplication.

Snapshot Tree Reduction (STR): As briefly mentioned
in §2.2, the storage system supports snapshots, which are
immutable lightweight copies of data (similar to a sim-
link), and can therefore generate an instantaneous copy
of a vDisk. Every time the system takes a snapshot, a
new node is added to a tree, called the snapshot tree, and
the vDisk metadata is inherited. Snapshot trees can be-
come rather deep. In order to be able to read a leaf node
from a tree, the system needs to traverse a sequence of
vDiskBlock map entries. The bigger the depth of a tree,
the more inefficient the read operation becomes.

To address this, the STR task “cuts” the snapshot trees,
by copying vDiskBlock map metadata from parents to
child nodes. There are two flavors, partial and full STR,
and their use depends on whether we need vDisk meta-
data only from some ancestors (partial) or from all of
them (full). Once the copy is performed, the child vDisks
have all the information needed for direct reads, i.e.,
there is no need to access the ancestors’ metadata, thus,
the read latency is reduced.

9Note that only the deletion of extent groups frees up physical
space.

3.3 Policies

The tasks described in §3.2 are executed based on
(roughly) four different policies, described below.

Event-driven: These tasks are triggered by events. For
example, whenever a disk/node fails, a Recovery task is
executed, no matter what. These are critical, higher pri-
ority tasks.

Threshold-based: These are dynamically executed tasks
based on fixed thresholds violations. For example, when
the tier usage is “high”, or the disk usage is “too” unbal-
anced, etc. We provide both examples below.

In order to be eligible for the Tiering task, the storage
tier usage from where we want to down migrate the data
should exceed a certain threshold f , whereas the desti-
nation tier usage should not exceed a threshold d, i.e., it
should have enough space to store the data to be moved.
Further, a threshold h indicates by how much the usage
percentage is to be reduced.10

Regarding DB, in order to be considered for balancing,
the mean tier usage should exceed a threshold m and the
disk usage spread should be greater than a threshold s.
The disk usage spread is the difference between the disk
with maximum usage and the disk with minimum usage
within the tier.11

Periodic Partial: We next consider tasks that are neither
triggered nor threshold-driven, but access only a subset
of the metadata maps. These tasks are executed every h1
hours, and are grouped based on the metadata tables they
scan.

Periodic Full: All tasks are executed as part of a full
scan every h2 hours. We call this policy full as it scans
all three metadata tables in Cassandra, the vDiskBlock,
extentID, and extentGroupID maps. Because the par-
tial scan only works on a subset of the metadata maps, it
can run more frequently than the full scan, i.e., h1 < h2.
In general, scans are expensive, hence, when a scan is
running, Curator tries to identify as many asynchronous
tasks as possible and lets them drain into the DSF over
time. In other words, Curator combines the processing
that must be done for the different tasks in order to re-
duce the scans’ overheads.

3.4 Evaluation

In this section, we evaluate Curator’s effectiveness with
respect to a number of metrics. We report results on three
different settings: a) customer clusters, where Curator is
always turned on, b) internal corporate production clus-
ters, where Curator is also on, and c) an internal local
cluster, where we enable/disable Curator to perform con-
trolled experiments.

10The default threshold values are f = 75%, d = 90%, and h = 15%.
11The default threshold values are m = 35% and s = 15%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1 10

F
ra

c
ti
o

n
 o

f
C

lu
s
te

rs

X / Total Capacity Ratio (%)

under-replicated
garbage

Figure 3: Under-Replicated Data and Garbage percentages (in
log-scale) with respect to Total Storage Capacity

3.4.1 Customer and Corporate Clusters

We leverage historical data from a number of real clus-
ters to assess Curator capabilities. In particular, we use
∼50 clusters over a period of two and a half months12 to
demonstrate Curator’s contributions to the overall cluster
resiliency, and data migration tasks. We also collect data
from ten internal corporate clusters over a period of three
days. These clusters are very heterogeneous in terms of
load and workloads, as they are used by different teams
to (stress) test diverse functionalities.

Recovery: Figure 3 shows the cumulative distribution
function (CDF) of the average under-replicated data as a
percentage of the overall cluster storage capacity (in log-
scale) in our customer clusters. We observe that around
60% of the clusters do not present any under-replication
problem. Further, 95% of the clusters have at most an
average of 0.1% under-replicated data.

For further confirmation, we access the availability
cases13 of the 40% of clusters from Figure 3 that reported
under-replication. We consider only those cases for the
clusters that were opened within 2 weeks of the under-
replication event (as indicated by the metric timestamp),
and look for unplanned down time in those clusters. We
do not find any unplanned down time in such clusters,
which suggests that Curator ensured that replication hap-
pened upon detecting the under-replication event so that
there was no availability loss.

Tiering: Figure 4 shows the CDF of SSD and HDD us-
age in our customer clusters. We observe that 40% of the
clusters have a SSD usage of at most∼70-75%. From the
remaining 60% of the clusters, many of them have 75%
SSD usage, which indicates that the Tiering task is doing
its job; data has been down-migrated so that the SSDs
can absorb either new writes or up-migration of hot data.
In the other 10%, the SSD usage is slightly higher, which
means that although the Tiering task is being executed,

12June to mid August 2016.
13We have access to a database of cases information corresponding

to various issues encountered in real clusters, where we can query using
different filters, e.g., availability problems, etc.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

F
ra

c
ti
o

n
 o

f
C

lu
s
te

rs

Usage (%)

SSD

HDD

Figure 4: SSD and HDD Usage

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
F

ra
c
ti
o

n
 o

f
C

lu
s
te

rs

Max / Mean Usage Ratio (%)

SSD

HDD

Figure 5: Max/Mean Usage Ratio

it cannot entirely cope with such (storage-heavy) work-
loads. We also note that HDD utilization is typically less,
with 80% of clusters having less than 50% HDD usage.

Garbage Collection: Figure 3 also illustrates the CDF of
the (95th percentile) percentage of garbage with respect
to the total storage capacity (in log-scale) in our corpo-
rate clusters. We observe that 90% of the clusters have
less than 2% of garbage, which confirms the usefulness
of the Garbage Collection task.

Disk Balancing: Figure 5 validates Disk Balancing in our
corporate clusters. We plot maximum over mean usage
ratio, for both SSDs and HDDs. We observe that in 60%
(SSDs) and 80% (HDDs) of the cases, the maximum disk
usage is almost the same as the mean.

3.4.2 Internal Cluster

We are interested in evaluating the costs incurred by Cu-
rator as well as the benefits it provides, with respect to
a “Curator-less” system, i.e., we want to compare the
cluster behavior with Curator enabled and when Curator
is disabled. Given that we cannot toggle Curator status
(ON-OFF) in customer deployments, in this section, we
do so in an internal test cluster. We provide a summary
of our findings in Table 3 in Appendix B.

Setup: We use a 4-node cluster in our experiments. The
cluster has 4 SSDs and 8 HDDs, for a total size of
1.85 TB for SSDs, and 13.80 TB for HDDs, with an over-
all CPU clock rate of 115.2 GHz, and a total memory of
511.6 GiB.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450 500

U
s
a

g
e

 (
%

)

Time (minutes)

SSD OFF

HDD OFF

SSD ON

HDD ON

Figure 6: SSD and HDD Usage with Curator ON and OFF

Workloads: We use Flexible I/O Tester (fio14) to generate
the exact same workloads for testing both settings, i.e.,
the behavior of the system when Curator is ON and OFF.
We re-image the cluster to the same initial clean state
when we toggle Curator status.

We simulate three online transaction processing
(OLTP) workloads, small, medium, and large, which we
execute sequentially as part of a single run. Each of these
workloads go over three phases, prefill, execution, and
destroy. In the prefill stage, they create their own user
virtual machines (UVMs), together with their associated
vDisks. After the prefill phase is done, they proceed to
execution, where the actual workload operations (reads
and/or writes) are executed. Following execution, the
destroy stage begins, where the UVMs and associated
vDisks are destroyed, i.e., the vDisks’ space can be re-
claimed. Appendix C describes the workloads in more
detail.

Benefits: In terms of benefits, we consider latency and
storage usage, which mainly highlight the benefits of T
and DR tasks.

Figure 6 shows SSD and HDD usage over time
for both Curator ON and OFF. We observe that SSD
and HDD usage when Curator is OFF follows a non-
decreasing pattern. When SSDs get full (∼125 minutes),
all the data starts being ingested directly into HDDs. In-
stead, when Curator is ON, we see the effects of Tiering,
where colder data is moved to HDDs when the default
usage threshold is surpassed (§3.3). Even though Tiering
kicks in “on time”, the data ingestion rate is so high that
the task cannot entirely cope with it, therefore, we ob-
serve SSD usage percentages in the 90’s. At the end, we
see that it reaches the 70’s.

Figure 6 also illustrates the benefits of Garbage Col-
lection and Data Removal in Curator. When Curator is
disabled, we observe a 96% SSD and 23% HDD usage
(∼5 TB) at the end of the run, whereas, when Cura-
tor is enabled, we see a 76% SSD and 6% HDD usage
(∼2.27 TB). The average storage usage over the whole
run is ∼2 TB and ∼3 TB for Curator ON and OFF re-

14https://github.com/axboe/fio

spectively. These differences are mainly due to the DR
task (§3.2.3). As described above, the destroy phase of
each workload, where UVMs and associated vDisks are
destroyed, allows the DR task to kick in and start the data
removal process, allowing huge storage savings.

Regarding latency, we see an average of∼12 ms when
Curator in ON, and ∼62 ms when is OFF. We measure
these values on the execution phase of the workloads. As
time progresses, the latencies increase when Curator is
disabled. We speculate this is due to the fact that the
newest ingested data goes directly into HDDs, as SSDs
are already full, thus, high latency penalties are paid
when reads/writes are issued.

Costs: We consider CPU and memory usage, as well as
the number of I/O operations performed.

We see that the number of IOPS executed is higher
when Curator is ON, as many of its tasks require reading
and writing actual data. Still, the overall average IOPS
when Curator is enabled lies in the same ballpark as the
disabled counterpart, ∼1400 as opposed to ∼1150 when
Curator is OFF.

We also notice that when Curator is ON, the CPU us-
age is slightly higher. This is due to Curator internals,
i.e., its MapReduce infrastructure. Although the mappers
primarily scan the metadata (mostly I/O intensive), the
reducers involve significant logic to process the scanned
information (mostly CPU intensive). Even though the
average CPU usage is higher when Curator is enabled,
18% as opposed to 14%, the value is still in an accept-
able range, and shows a somewhat stable pattern over
time. Regarding memory usage, we do not see a differ-
ence between both versions of the system, as shown in
Table 3.

3.5 Experiences and Lessons Learned

In this section, we highlight some of the key experiences
we gleaned from building Curator.

Firstly, the fact that we had a background processing
framework in the form of Curator simplified the addi-
tion of new features into the file system. Whenever a
new feature was to be added, we systematically identi-
fied how that feature could be factored into a foreground
component (which would be run as part of the DSF) and
a background component (which would be run as part of
Curator). This allowed for easy integration of new func-
tionality and kept the foreground work from becoming
complex. As an example, our foreground operations do
not perform transactional updates to metadata. Instead,
they rely on Curator to roll-back incomplete operations
as part of its continuous background consistency checks.

Secondly, having a background MapReduce process to
do post-process/lazy storage optimization allowed us to
achieve better latencies for user I/O. While serving an I/O
request, the DSF did not have to make globally optimal

https://github.com/axboe/fio

decisions on where to put a piece of data nor what trans-
formations (compression, dedupe, etc.) to apply on that
data. Instead, it could make decisions based on minimal
local context, which allowed us to serve user I/O faster.
Later on, Curator in the background would re-examine
those decisions and make a globally optimal choice for
data placement and transformation.

Thirdly, given that we use MapReduce, almost all Cu-
rator tasks were required to be expressed using MapRe-
duce constructs (map and reduce operations). For most
tasks, this was straightforward and allowed us to build
more advanced functionality. MapReduce was however
cumbersome in some others, as it required us to scan en-
tire metadata tables during the map phase. We leveraged
once again our infrastructure to first filter out which por-
tions of the metadata maps to analyze before perform-
ing the actual analysis. This filter step became another
map operation, and could be flexibly added to the begin-
ning of a MapReduce pipeline. In retrospect, given our
choice of the metadata repository (i.e., a distributed key-
value store), we believe MapReduce was the right choice
as it provided an easy and efficient way to process our
metadata, where we could leverage the compute power
of multiple nodes and also ensure that the initial map
operations are performed on node-local metadata, with
communication incurred only on a much smaller subset
of the metadata communicated to the reduce steps.

In terms of the distributed key-value store, although it
needed more hard work from the perspective of process-
ing the metadata, it provided us a way to scale from small
clusters (say three nodes) to larger (hundreds of nodes)
ones. If we had decided to keep the data in a single node,
a SQL-Lite like DB could have been enough to do most
of the processing we are doing in our MapReduce frame-
work. Many of the other commercial storage products
had done this, but we observe two main issues: 1) spe-
cial dedicated nodes for metadata cause a single point of
failure, and 2) the vertical scale up requirement of such
nodes – as the physical size of these storage nodes in-
creases with the number of logical entities, they will need
to be replaced or upgraded in terms of memory/CPU.15

Finally, we noticed a considerable heterogeneity
across clusters. While nodes in a cluster are typically
homogeneous, different clusters were setup with vary-
ing amount of resources. The workload patterns were
also different, some ran server workloads, others were
used for virtual desktop infrastructure (VDI), whereas
some others were deployed for big data applications.
Further, the variation in load across different times of
day/week was significant in some clusters but not in oth-
ers. Given this heterogeneity, our heuristics tended to be
sub-optimal in many clusters. This motivated us to look

15Note that the GFS file-count issue was one of the primary reasons
that motivated Colossus [26].

at ML approaches to optimize the scheduling of tasks,
which we discuss next.

4 Machine Learning-driven Policies
We have described so far an overview of the distributed
storage fabric, and delved further into Curator’s design
and implementation, its tasks and policies of execution,
etc. In this section, we propose our modeling strategy,
based on machine learning, to improve the threshold-
based policies introduced in §3.3. Note that the tech-
niques presented here have not been deployed yet.

We motivate the need for machine learning-driven
policies in §4.1. We provide background information on
the general reinforcement learning framework we use for
our modeling in §4.2.1, and describe with more details Q-
learning in §4.2.2. We finally show the results of some
experiments on Tiering, our primary use case, in §4.3.

4.1 Motivation

We observed a wide heterogeneity of workloads across
our cluster deployments. Given these distinct character-
istics of workloads, we noted that the threshold-based
execution policies introduced in §3.3 were not optimal
for every cluster, nor for individual clusters over time
as some of them experienced different workloads at dif-
ferent times (seasonality effects). Thus, in order to ef-
ficiently execute Curators management tasks, it became
necessary to build “smarter” policies that could adapt on
a case-by-case basis at runtime.

The traditional way to improve performance is to use
profiling in order to tune certain parameters at the begin-
ning of cluster deployments. Nevertheless, simple pro-
filing would not easily adapt to the varying loads (and
changing workloads) our clusters are exposed to over
their lifetime. We would need to run profilers every so
often, and we would lose, in some sense, past knowledge.
We therefore propose using a ML-based solution, which
leverages the potential of statistical models to detect pat-
terns and predict future behavior based on the past.

4.2 Background

We encompass this problem within the abstract and
flexible reinforcement learning framework, explained
in §4.2.1. In particular, we use the model-free popular
Q-learning algorithm described in §4.2.2.

4.2.1 Reinforcement Learning (RL)

Reinforcement learning considers the problem of a learn-
ing agent interacting with its environment to achieve a
goal. Such an agent must be able to sense, to some ex-
tent, the state of the environment, and must be able to
take actions that will lead to other states. By acting in
the world, the agent will receive rewards and/or pun-
ishments, and from these it will determine what to do

next [35]. RL is about learning a policy π that maps sit-
uations to actions, so as to maximize a numerical reward
signal.16 The agent is not told which actions to take, but
instead, it must discover which actions yield the most re-
ward by trying them [42].

More formally, the agent interacts with the environ-
ment in a sequence of discrete time steps, t = 0,1,2,3....
At each time step t, the agent senses the environment’s
state, st ∈ S, where S is the set of all possible states, and
selects an action, at ∈ A(st), where A(st) is the set of all
actions available in state st . The agent receives a reward,
rt+1 ∈ R, and finds itself in a new state, st+1 ∈ S.

The goal of the agent is to maximize the total reward
it receives over the long run. If the sequence of rewards
received after time step t is rt+1,rt+2,rt+3, ..., then the
objective of learning is to maximize the expected dis-
counted return. The discounted return Gt is given by:

Gt = rt+1 + γrt+2 + γ
2rt+3 + ...=

∞

∑
k=0

γ
krt+k+1 (1)

where 0≤ γ ≤ 1 is called the discount factor. γ = 0 will
make the agent “myopic” (or short-sighted) by only con-
sidering immediate rewards, while γ → 1 will make it
strive for a long-term high reward [42].

Given that we do not have examples of desired be-
havior (i.e., training data) but we can assign a measure
of goodness (i.e., reward) to examples of behavior (i.e.,
state-action) [38], RL is a natural fit to our problem.

4.2.2 Q-Learning

Q-Learning [44] is a reinforcement learning algorithm,
which falls under the class of temporal difference (TD)
methods [40, 41], where an agent tries an action at at a
particular state st , and evaluates its effects in terms of the
immediate reward rt+1 it receives and its estimate of the
value of the state st+1 to which it is taken. By repeatedly
trying all actions in all states, it learns which ones are
best, i.e., it learns the optimal policy π∗, judged by long-
term discounted return.

One of the strengths of this model-free algorithm is
its ability to learn without requiring a model of the en-
vironment, something model-based approaches do need.
Also, model-free methods often work well when the state
space is large (our case), as opposed to model-based
ones, which tend to work better when the state space is
manageable [5].17

Q-Learning uses a function Q that accepts a state st
and action at , and outputs the value of that state-action
pair, which is the estimate of the expected value (dis-
counted return) of doing action at in state st and then
following the optimal policy π∗ [21]. Its simplest form,

16The policy that achieves the highest reward over the long run is
known as optimal policy, and typically denoted as π∗.

17We were (mainly) inclined to using Q-learning because of these
two reasons.

one-step Q-learning, is given by:
Q(st ,at) = Q(st ,at)+α[rt+1 + γmaxaQ(st+1,a)−Q(st ,at)] (2)

where 0 ≤ α ≤ 1 is the learning rate, and determines to
what extent new information overrides old one.

Although the learned Q-function can be used to deter-
mine an optimal action, the algorithm does not specify
what action the agent should actually take [21]. There
are two things that are useful for the agent to do, known
as the exploration/exploitation trade-off:

• exploit: the knowledge that it has of the current
state st by doing the action in A(st) that maximizes
Q(st ,A(st)).

• explore: to build a better estimate of the optimal Q-
function. That is, it should select a different action
from the one that it currently thinks is the best.

The Q-function above can be implemented using a
simple lookup table. Nevertheless, when the state-action
space is large, e.g., continuous space, storing Q-values in
a table becomes intractable. The Q-function needs to be
approximated by a function approximator.

The compression achieved by a function approximator
allows the agent to generalize from states it has visited to
states it has not. The most important aspect of function
approximation is not just related to the space saved, but
rather to the fact that it enables generalization over input
spaces [35], i.e., the algorithm can now say “the value of
these kind of states is x”, rather than “the value of this
exact specific state is x” [1].

4.3 Use Case: Tiering

Having introduced the basics of reinforcement learning
and Q-learning, in this section, we propose using the lat-
ter algorithm for deciding when to trigger Tiering. Al-
though our initial efforts are on the tiering question of
how much data to keep in SSDs, our approach general-
izes to any of the threshold-based tasks described before.

4.3.1 State-Action-Reward

In order to apply Q-learning, we need to define the set of
states S, the set of possible actions A, and the rewards r.

We define state s at time step t by the following tu-
ple st = (cpu,mem,ssd, iops,riops,wiops)t , where 0 ≤
cpu ≤ 100 is the CPU usage, 0 ≤ mem ≤ 100 the mem-
ory usage, 0 ≤ ssd ≤ 100 the SSD usage, iops ∈ R the
total IOPS, riops ∈ R the read IOPS, and wiops ∈ R the
write IOPS, all at time step t, where st ∈ S.

We further define two possible actions for every state,
either not run or run Tiering. Mathematically, the set of
actions A is given by A = {0,1}∀st ∈ S, where 0 corre-
sponds to not run, and 1 corresponds to run the task.

Finally, we use latency as reward. As higher rewards
are better, though we prefer lower latencies, we actually

use negative latencies,18 i.e., the reward r at time step t
is given by rt = −latt , where latt ∈ R is the latency in
milliseconds at time step t.

4.3.2 Function Approximator

Given that we have a continuous state space S, as defined
in §4.3.1, we cannot use a tabular implementation of Q-
learning. We therefore resort to a function approximator,
and also gain from its advantages towards generalization.

Many approximators have been studied in the past,
such as deep neural networks [28, 27], decision
trees [33], linear functions [9, 43], kernel-based meth-
ods [30], etc. In this work, we choose a linear approxi-
mation. The reason behind this decision is two-fold: a)
we do not have enough historical data to train more ad-
vanced methods, e.g., neural networks (§4.3.3), and b)
we see that it works reasonably well in practice (§4.3.4).

4.3.3 Dataset

One key aspect of RL is related to how the agent is de-
ployed. If there is enough time for the agent to learn
before it is deployed, e.g., using batch learning with of-
fline historical data, then it might be able to start making
right choices sooner, i.e., the policy it follows might be
closer to the optimal policy. Whereas if the agent is de-
ployed without any prior knowledge, i.e., has to learn
from scratch while being deployed, it may never get to
the point where it has learned the optimal policy [21].

We also face this challenge as issues might arise from
the time scales associated with online training from
scratch in a real cluster; it may take a long time before the
state space is (fully) explored. To overcome this limita-
tion, we build a dataset from data collected from a subset
of the 50 customer clusters mentioned in §3.4.1. In par-
ticular, we use ∼40 clusters, from which we have fine-
grained data to represent states, actions, and rewards.
The data consists of ∼32K transitions, sampled from the
(suboptimal) threshold-based policy. Every cluster was
using the same default thresholds described in §3.3. Even
using a suboptimal policy to “bootstrap” a model can be
helpful in reaching good states sooner, and is a common
practice for offline RL evaluation [25].

Following ML practices, we split the dataset into train-
ing (80%) and test (20%) sets, and do 3-fold cross vali-
dation in the training set for hyper-parameter tuning. We
standardize the features by removing the mean and scal-
ing to unit variance. We train two linear models, one for
each action, with Stochastic Gradient Descent (SGD) [7]
using the squared loss.

4.3.4 Evaluation

In this section, we evaluate our Q-learning model, and
compare it to the baseline model, i.e., the threshold-

18The choice of using negative latencies is rather arbitrary, we could
have used their reciprocals instead.

based solution. We use the same internal cluster setup
as §3.4.2 to run our experiments.

We deploy our agent “pre-trained” with the dataset de-
scribed in §4.3.3. Once deployed, the agent keeps on in-
teracting with the environment, exploring/exploiting the
state space. We use the popular ε-greedy strategy, i.e.,
with probability ε the agent selects a random action, and
with probability 1− ε the agents selects the greedy ac-
tion (the action that it currently thinks is the best). We
use ε = 0.2 in all our experiments. It is possible to vary ε

over time, to favor exploration on early stages, and more
exploitation as time progresses. We leave that to future
work. Further, we set γ = 0.9.

Table 1 presents results for five different workloads,
described in Appendix D. We compute these numbers
based on the execution phase of the workloads, i.e., after
the pre-fill stage is done, and where the actual read/writes
are executed. More results are included in Appendix E.
The current experiments are within a short time frame
(order of hours), we expect to see even better results with
longer runs. We observe that in all of the cases our Q-
learning solution reduces the average latency, from∼2%
in the oltp-varying workload, up to ∼20% in the oltp-
skewed one, as well as improves the total number of SSD
bytes read. We believe that further improvements could
also be achieved by adding more features to the states,
e.g., time of the day features to capture temporal dynam-
ics, HDD usage, etc. We also notice that Q-learning de-
mands more IOPS. This is the case since our solution,
in general, triggers more tasks than the baseline, thus
more I/O operations are performed. Overall, we see that
our approach can trade manageable penalties in terms of
number of IOPS for a significant improvement in SSD
hits, which further translates into significant latency re-
ductions, in most of our experimental settings.

5 Related Work
Our work borrows techniques from prior work on cluster
storage and distributed systems, but we compose them
in new ways to address the unique characteristics of our
cluster setting. Note that our setting corresponds to clus-
ters where cluster nodes are heterogeneous, unmodified
(legacy) client applications are packaged as VMs, and
cluster nodes can be equipped with fast storage tech-
nologies (SSDs, NVMe, etc.). Given this setting, we
designed a system where client applications run on the
same nodes as the storage fabric, metadata is distributed
across the entire system, and faster storage on cluster
nodes is effectively used. We now contrast our work with
other related work given these differences in execution
settings and design concepts.

Systems such as GFS [17] and HDFS [37] are de-
signed for even more scalable settings but are tailored to
work with applications that are modified to take advan-

Workload Metric
Policy

fixed q-learningthreshold

oltp Avg. Latency (ms) 12.48 10.60
SSD Reads (GB) 31.68 39.16
Avg. # of IOPS 2551.54 2903.20

oltp-skewed Avg. Latency (ms) 18.55 14.91
SSD Reads (GB) 151.99 176.28
Avg. # of IOPS 6686.90 7221.01

oltp-varying Avg. Latency (ms) 17.28 16.95
SSD Reads (GB) 469.28 488.17
Avg. # of IOPS 7884.94 8192.32

oltp-vdi Avg. Latency (ms) 15.41 13.92
SSD Reads (GB) 40.83 41.27
Avg. # of IOPS 4450.18 5178.13

oltp-dss Avg. Latency (ms) 61.65 53.00
SSD Reads (GB) 4601.17 6233.33
Avg. # of IOPS 3105.60 3239.59

Table 1: Results Summary

tage of their features (e.g., large file support, append-only
files, etc.). Further, they do not distribute metadata, since
a single node can serve as a directory server given the use
of large files and infrequent metadata interactions. These
systems do not take advantage of fast storage – all file
operations involve network access and the incremental
benefits of fast storage on the server side is minimal.

Cluster storage systems such as SAN and NAS also
do not co-locate application processes/VMs with servers.
They assume a disaggregated model of computing,
wherein applications run on client machines and all the
data is served from dedicated clusters [15, 34, 18, 39, 36].
These systems provide scalability benefits and a wide va-
riety of features, such as snapshotting [14], which we
borrow in our system as well. But the crucial points of
differentiation are that our system uses fast local storage
effectively through tiering, data migration, and disk bal-
ancing. Moreover, we believe that ours is the first system
to run a continuous consistency checker which results in
significant reductions in downtime.

We use a number of concepts and solutions from dis-
tributed systems: MapReduce [10] to perform cluster-
wide computations on metadata, Cassandra [22] to store
distributed metadata as a key-value store, Paxos [23] to
perform leader election for coordination tasks. Interest-
ingly, MapReduce is not a client application running on
top of the storage system but rather part of the storage
system framework itself.

In recent years, there has been an increasing amount
of literature on applying ML techniques to improve
scheduling decisions in a wide variety of areas, such
as manufacturing [32, 31, 29, 47, 6], sensor sys-
tems [20], multicore data structures [12], autonomic
computing [45], operating systems [16], computer archi-
tecture [19], etc. In Paragon [11], the authors propose a

model based on collaborative filtering to greedily sched-
ule applications in a manner that minimizes interference
and maximizes server utilization on clusters with hetero-
geneous hardware. Their work focuses more on online
scheduling of end user workloads, whereas ours, con-
centrates on the background scheduling of cluster main-
tenance tasks to improve the overall cluster performance.

Wrangler [46] proposes a model based on Support
Vector Machines [8] to build a scheduler that can se-
lectively delay the execution of certain tasks. Similar
to our work, they train a linear model based on CPU,
disk, memory, as well as other system-level features,
in an offline-manner, and then deploy it to make bet-
ter scheduling decisions. In contrast, our offline (su-
pervised) trained model only “bootstraps” the RL one,
which keeps on adapting and learning at runtime, i.e., in
an online-manner. Smart Locks [13] is a self-tuning spin-
lock mechanism that uses RL to optimize the order and
relative frequency with which different threads get the
lock when contending for it. They use a somewhat sim-
ilar approach, though they target scheduling decisions at
a much lower level.

Perhaps the most similar line of work comes from op-
timal control [24, 2, 3, 4]. The papers by Prashanth et
al. [2, 3] propose using RL for tuning fixed thresholds on
traffic light control systems. They propose a Q-learning
model that adapts to different traffic conditions in order
to switch traffic light signals. We use a similar approach
but in a different setting, where we learn to better sched-
ule data migration in a multi-tier storage system.

6 Conclusions

Nowadays, cluster storage systems are built-in with
a wide range of functionality that allows to main-
tain/improve the storage system’s health and perfor-
mance. In this work, we presented Curator, a background
self-managing layer for storage systems in the context
of a distributed storage fabric used in enterprise clusters.
We described Curator’s design and implementation, its
management tasks, and how our choice of distributing
the metadata across several nodes in the cluster made Cu-
rator’s MapReduce infrastructure necessary and efficient.
We evaluated the system in a number of relevant metrics,
and reported experiences gathered from its five-year pe-
riod of construction, as well as thousands of deployments
in the field. More recently, and given the heterogeneity
across our clusters, we focused our attention on build-
ing “smarter” task execution policies. We proposed an
initial model that uses reinforcement learning to address
the issue of when Curator’s management tasks should be
executed. Our empirical evaluation on simulated work-
loads showed promising results, achieving up to ∼20%
latency improvements.

References
[1] Q-learning with Neural Networks. http://outlace.com/

Reinforcement-Learning-Part-3/. Accessed: 2016-
09-07.

[2] A., P. L., AND BHATNAGAR, S. Reinforcement Learning With
Function Approximation for Traffic Signal Control. IEEE Trans.
Intelligent Transportation Systems 12, 2 (2011), 412–421.

[3] A., P. L., AND BHATNAGAR, S. Threshold Tuning Using
Stochastic Optimization for Graded Signal Control. IEEE Trans.
Vehicular Technology 61, 9 (2012), 3865–3880.

[4] A., P. L., CHATTERJEE, A., AND BHATNAGAR, S. Adap-
tive Sleep-Wake Control using Reinforcement Learning in Sen-
sor Networks. In Sixth International Conference on Communica-
tion Systems and Networks, COMSNETS 2014, Bangalore, India,
January 6-10, 2014 (2014), pp. 1–8.

[5] ANDREW, M. Reinforcement Learning, Tutorial Slides
by Andrew Moore. https://www.autonlab.org/
tutorials/rl.html. Accessed: 2017-02-10.

[6] AYTUG, H., BHATTACHARYYA, S., KOCHLET, G. J., AND
SNOWDON, J. L. A Review of Machine Learning in Schedul-
ing. IEEE Transactions on Engineering Management (1994).

[7] BOTTOU, L. Large-scale Machine Learning with Stochastic Gra-
dient Descent. In COMPSTAT (2010).

[8] CORTES, C., AND VAPNIK, V. Support-Vector Networks. Mach.
Learn. 20, 3 (Sept. 1995), 273–297.

[9] DAYAN, P. The Convergence of TD(λ) for General λ . Machine
Learning 8 (1992), 341–362.

[10] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data
Processing on Large Clusters. Commun. ACM 51, 1 (Jan. 2008),
107–113.

[11] DELIMITROU, C., AND KOZYRAKIS, C. Paragon: QoS-aware
Scheduling for Heterogeneous Datacenters. In Proceedings of the
Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (2013), ASP-
LOS ’13, ACM, pp. 77–88.

[12] EASTEP, J., WINGATE, D., AND AGARWAL, A. Smart Data
Structures: An Online Machine Learning Approach to Multicore
Data Structures. In Proceedings of the 8th International Confer-
ence on Autonomic Computing, ICAC 2011, Karlsruhe, Germany,
June 14-18, 2011 (2011), pp. 11–20.

[13] EASTEP, J., WINGATE, D., SANTAMBROGIO, M. D., AND
AGARWAL, A. Smartlocks: Lock Acquisition Scheduling for
Self-Aware Synchronization. In Proceedings of the 7th Interna-
tional Conference on Autonomic Computing, ICAC 2010, Wash-
ington, DC, USA, June 7-11, 2010 (2010), pp. 215–224.

[14] EDWARDS, J. K., ELLARD, D., EVERHART, C., FAIR, R.,
HAMILTON, E., KAHN, A., KANEVSKY, A., LENTINI, J.,
PRAKASH, A., SMITH, K. A., AND ZAYAS, E. FlexVol: Flex-
ible, Efficient File Volume Virtualization in WAFL. In USENIX
2008 Annual Technical Conference (2008), ATC’08, USENIX
Association, pp. 129–142.

[15] EMC. EMC Isilon OneFS: A Technical Overview, 2016.

[16] FEDOROVA, A., VENGEROV, D., AND DOUCETTE, D. Operat-
ing system Scheduling on Heterogeneous Core Systems. In Pro-
ceedings of 2007 Operating System Support for Heterogeneous
Multicore Architectures (2007).

[17] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google
File System. In Proceedings of the Nineteenth ACM Sympo-
sium on Operating Systems Principles (2003), SOSP ’03, ACM,
pp. 29–43.

[18] GLUSTER. Cloud Storage for the Modern Data Center: An Intro-
duction to Gluster Architecture, 2011.

[19] IPEK, E., MUTLU, O., MARTÍNEZ, J. F., AND CARUANA, R.
Self-Optimizing Memory Controllers: A Reinforcement Learn-
ing Approach. In Proceedings of the 35th Annual International
Symposium on Computer Architecture (2008), ISCA ’08, IEEE
Computer Society, pp. 39–50.

[20] KRAUSE, A., RAJAGOPAL, R., GUPTA, A., AND GUESTRIN, C.
Simultaneous Placement and Scheduling of Sensors. In Proceed-
ings of the 2009 International Conference on Information Pro-
cessing in Sensor Networks (2009), IPSN ’09, IEEE Computer
Society, pp. 181–192.

[21] L., P. D., AND K., M. A. Artificial Intelligence: Foundations of
Computational Agents. Cambridge University Press, 2010.

[22] LAKSHMAN, A., AND MALIK, P. Cassandra: A Decentralized
Structured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (Apr.
2010), 35–40.

[23] LAMPORT, L. Paxos Made Simple. In ACM SIGACT News
(2001), vol. 32, pp. 51–58.

[24] LU, C., STANKOVIC, J. A., SON, S. H., AND TAO, G. Feed-
back Control Real-Time Scheduling: Framework, Modeling,
and Algorithms. Journal of Real-Time Systems, Special Issue
on Control-Theoretical Approaches to Real-Time Computing 23
(2002), 85–126.

[25] MARIVATE, V. N. Improved Empirical Methods in Reinforce-
ment Learning Evaluation. PhD thesis, 2015.

[26] MCKUSICK, M. K., AND QUINLAN, S. GFS: Evolution on Fast-
forward. Queue 7, 7 (2009), 10:10–10:20.

[27] MNIH, V., KAVUKCUOGLU, K., SILVER, D., GRAVES, A.,
ANTONOGLOU, I., WIERSTRA, D., AND RIEDMILLER, M.
Playing Atari With Deep Reinforcement Learning. In NIPS Deep
Learning Workshop. 2013.

[28] MNIH, V., KAVUKCUOGLU, K., SILVER, D., RUSU, A. A.,
VENESS, J., BELLEMARE, M. G., GRAVES, A., RIEDMILLER,
M., FIDJELAND, A. K., OSTROVSKI, G., PETERSEN, S.,
BEATTIE, C., SADIK, A., ANTONOGLOU, I., KING, H., KU-
MARAN, D., WIERSTRA, D., LEGG, S., AND HASSABIS,
D. Human-level Control through Deep Reinforcement Learning.
Nature 518, 7540 (02 2015), 529–533.

[29] MÖNCH, L., ZIMMERMANN, J., AND OTTO, P. Machine Learn-
ing Techniques for Scheduling Jobs with Incompatible Families
and Unequal Ready Times on Parallel Batch Machines. Eng.
Appl. Artif. Intell. 19, 3 (Apr. 2006), 235–245.

[30] ORMONEIT, D., AND SEN, S. Kernel-Based Reinforcement
Learning. In Machine Learning (1999), pp. 161–178.

[31] PRIORE, P., DE LA FUENTE, D., GOMEZ, A., AND PUENTE,
J. A Review of Machine Learning in Dynamic Scheduling of
Flexible Manufacturing Systems. Artif. Intell. Eng. Des. Anal.
Manuf. 15, 3 (June 2001), 251–263.

[32] PRIORE, P., DE LA FUENTE, D., PUENTE, J., AND PARREÑO,
J. A Comparison of Machine-learning Algorithms for Dynamic
Scheduling of Flexible Manufacturing Systems. Eng. Appl. Artif.
Intell. 19, 3 (Apr. 2006), 247–255.

[33] PYEATT, L. D., AND HOWE, A. E. Decision Tree Function
Approximation in Reinforcement Learning. Tech. rep., Proceed-
ings of the Third International Symposium on Adaptive Systems:
Evolutionary Computation and Probabilistic Graphical Models,
1998.

[34] RODEH, O., AND TEPERMAN, A. zFS - A Scalable Distributed
File System Using Object Disks. In IEEE Symposium on Mass
Storage Systems (2003), IEEE Computer Society, pp. 207–218.

http://outlace.com/Reinforcement-Learning-Part-3/
http://outlace.com/Reinforcement-Learning-Part-3/
https://www.autonlab.org/tutorials/rl.html
https://www.autonlab.org/tutorials/rl.html

[35] RUSSELL, S. J., AND NORVIG, P. Artificial Intelligence: A Mod-
ern Approach, 2 ed. Pearson Education, 2003.

[36] SCHMUCK, F., AND HASKIN, R. GPFS: A Shared-Disk File
System for Large Computing Clusters. In Proceedings of the 1st
USENIX Conference on File and Storage Technologies (2002),
FAST ’02, USENIX Association.

[37] SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R.
The Hadoop Distributed File System. In Proceedings of the 2010
IEEE 26th Symposium on Mass Storage Systems and Technolo-
gies (MSST) (2010), MSST ’10, IEEE Computer Society, pp. 1–
10.

[38] SI, J., BARTO, A. G., POWELL, W. B., AND WUNSCH, D.
Handbook of Learning and Approximate Dynamic Programming
(IEEE Press Series on Computational Intelligence). Wiley-IEEE
Press, 2004.

[39] SUN. Lustre File System: High-Performance Storage Architec-
ture and Scalable Cluster File System, 2007.

[40] SUTTON, R. S. Temporal Credit Assignment in Reinforcement
Learning. PhD thesis, 1984. AAI8410337.

[41] SUTTON, R. S. Learning to Predict by the Methods of Tempo-
ral Differences. In MACHINE LEARNING (1988), Kluwer Aca-
demic Publishers, pp. 9–44.

[42] SUTTON, R. S., AND BARTO, A. G. Introduction to Reinforce-
ment Learning, 1st ed. MIT Press, 1998.

[43] TSITSIKLIS, J. N., AND ROY, B. V. An Analysis of Temporal-
Difference Learning with Function Approximation. Tech. rep.,
IEEE Transactions on Automatic Control, 1997.

[44] WATKINS, C. J. C. H., AND DAYAN, P. Technical Note: Q-
Learning. Mach. Learn. 8, 3-4 (May 1992), 279–292.

[45] WHITESON, S., AND STONE, P. Adaptive Job Routing and
Scheduling. Eng. Appl. Artif. Intell. 17, 7 (Oct. 2004), 855–869.

[46] YADWADKAR, N. J., ANANTHANARAYANAN, G., AND KATZ,
R. Wrangler: Predictable and Faster Jobs Using Fewer Re-
sources. In Proceedings of the ACM Symposium on Cloud Com-
puting (2014), SOCC ’14, ACM, pp. 26:1–26:14.

[47] YIH, Y. Learning Real-Time Scheduling Rules from Optimal
Policy of Semi-Markov Decision Processes. International Jour-
nal of Computer Integrated Manufacturing (1992).

A Metadata Maps Accessed by Curator

Category Task Metadata Maps

vDiskBlock extentID extentGroupID

Recovery DF x
FT x

Data T19 x
Migration DB x

Space GC x x x
Reclamation DR x x x

C x
Data EC x

Transformation DD x x x
STR x

Table 2: Metadata Tables accessed by Curator tasks

B Benefits/Costs Curator ON/OFF

Metric (Average) Curator

OFF ON

Benefits Latency (ms) 61.73 12.3
Storage Usage (TB) 3.01 2.16

Costs
CPU Usage (%) 14 18

Memory Usage (%) 14.703 14.705
of IOPS 1173 1417

Table 3: Benefits/Costs Summary

C OLTP Workloads
Each OLTP workload is composed of two sections, Data
and Log, which emulates the actual data space and log
writing separation in traditional Database Management
Systems. The Data section performs random reads and
writes, 50% reads and 50% writes. Further, 10% of its
I/O operations, either reads or writes, have 32k block
sizes, and 90% 8k blocks. On the other hand, the
Log section is write only, 10% of the writes are ran-
dom, and all operations are 32k. The three workloads
(small, medium, large) only differ on how much data they
read/write, and the number of IOPS, as shown in Table 4.

Workload Data Log

Size (GB) IOPS Size (GB) IOPS

small 800 4000 16 200
medium 1120 6000 16 300

large 1120 8000 12 400

Table 4: OLTP Workloads

19Also accesses an additional map, as discussed in 3.2.2.

D ML-driven Policies Workloads
We use the following five workloads to test our ML-
driven policies:

• oltp: same as the OLTP large workload shown in Ta-
ble 4, with which we intend to simulate a standard
database workload.

• oltp-skewed: similar to OLTP large, but here the Data
section is read only, and performs 8k block random
reads according to the following distribution: 90% of
the accesses go to 10% of the data. It has a working
set size of 4480 GB, and performs 32000 I/O opera-
tions per second. With this workload we aim to better
understand the effects of hot data skewness.

• oltp-varying: Alternates between the OLTP medium
and small workloads shown in Table 4 every 20 min-
utes. In this case, we aim to simulate varying loads of
the same type of workload within a cluster.

• oltp-vdi: Runs the OLTP large workload in one node
while the remaining nodes execute VDI-like work-
loads in 100 VMs each. A VDI-like workload con-
sists of a working set size of 10 GB, split into Read
and Write sections. 80% of the reads in the Read sec-
tion are random, 10% of the read operations have 32k
block sizes, and 90% 8k blocks. Regarding the Write
section, only 20% of the writes are random, and all
have 32k block sizes. The writes are done in the last
2 GB of data, whereas the reads range spans the first
8 GB. The total number of IOPS per VM is 26 (13
each section). Here, the idea is to simulate (concur-
rent) heterogeneous workloads within a cluster.

• oltp-dss: Alternates between the OLTP medium and
a DSS (Decision Support System) workload every 20
minutes. As DSS is a type of DB workload, it also
has Data and Log sections, but as opposed to an OLTP
workload, the Data section of a DSS-like workload
performs only reads. Here, such section has a working
set size of 448 GB, 100% of the reads are sequential,
the read operations size is 1 MB, and the total number
of IOPS is 2880. As regards to the Log section, the
working set is 16 GB, 10% of the writes are random,
the block sizes are 32k, and the rate of IOPS is 800.
In this case, we attempt to simulate that the workload
itself changes over time.

E ML-driven Policies Results
Impact of Tiering on Total Number of SSD Reads

Figure 7 shows the evolution of SSD reads for the oltp
and oltp-skewed workloads. We observe that our method
based on Q-learning performs on average more SSD
reads (∼8 GB and ∼24 GB respectively) than the base-
line for both workloads, which is a consequence of per-
forming more Tiering operations during periods when

the offered load from applications is low.

 0.5

 1

 2

 4

 8

 0 10 20 30 40 50 60 70 80

S
S

D
 R

e
a

d
s
 (

G
B

)

Time (minutes)

threshold oltp

q-learning oltp

threshold oltp-skewed

q-learning oltp-skewed

Figure 7: SSD Reads in the oltp and oltp-skewed workloads

Q-Learning in Action

We now provide performance data corresponding to a
sample scenario and illustrate how the Q-Learning model
operates in practice. Figure 8 shows the IOPS, latency,
and scheduling decisions made while executing the oltp-
dss workload with our ML-based scheduler. We only plot
the execution phase of the workload, where the actual
operations are executed. Our system polls the state of
the cluster every 30 seconds, if it had not triggered Tier-
ing recently, in order to assess whether Tiering should be
performed. After a Tiering task is triggered, we wait for
5 minutes before making a new decision, as we do not
want to schedule Tiering tasks back-to-back. Regarding
the scheduling plot, we not only include the two choices
the algorithm makes, run and not run, but also differen-
tiate whether its decision was due to exploitation (solid
lines) or exploration (dashed lines).

The workload keeps on alternating between the OLTP
medium and DSS workloads every 20 minutes, as de-
scribed in Appendix D. It starts with the former, contin-
ues with the latter, and so on. We observe that the OLTP
medium workload, in general, demands more IOPS than
the DSS one, and also achieves lower latencies (cyclic
behavior).

At the beginning, even with high IOPS and low la-
tency, the algorithm thinks that the best option is to
trigger Tiering (0-20 minutes). When the DSS work-
load commences (early 20s), the algorithm still keeps
scheduling Tiering tasks. In this case, it makes more
sense as the cluster utilization is not too high but the la-
tency is. Around minute 44, the algorithm explores the
state space by not running Tiering (dashed red line that
almost overlaps the solid red ones that follow). Given
that this exploration seems to have found a “nice state”
with low latency, it considers the best option is to not to
run Tiering (first chunk of solid red lines around minute
45). Note that given our 30 seconds polling interval when
we do not run Tiering, these lines seem to overlap.

At approximately the 47th minute, the algorithm per-

 0

 2000

 4000

 6000

 0 20 40 60 80 100 120 140 160 180 200

IO
P

S

Time (minutes)

 0

 30

 60

 90

 120

 0 20 40 60 80 100 120 140 160 180 200

L
a

te
n

c
y
 (

m
s
)

Time (minutes)

 0

 30

 60

 90

 0 20 40 60 80 100 120 140 160 180 200S
c
h

e
d

u
lin

g
 D

e
c
is

io
n

s

Time (minutes)

run exploit
run explore

no-run exploit
no-run explore

Figure 8: IOPS/Latency/Scheduling Decisions in the oltp-dss
workload using Q-learning

forms an exploration that triggers Tiering (dashed blue
line). It does not work out, as later on, the best decisions
are still not to run Tiering (solid red lines around min-
utes 52-54). Around minute 63, when DSS commences
again, the algorithm thinks it is best to run Tiering. At
this point, the cluster is not very utilized, i.e., low IOPS,
but the latency is high.

The key thing to notice is that the algorithm seems
to be learning that when the cluster is highly utilized
(high IOPS) and the latency is low, it should not trigger
Tiering. During the first period (0-20mins), it was not
aware of that, thus it ran Tiering, but later on, it started
to figure it out (e.g., 40-60mins and 80-100mins peri-
ods). Even more noticeable is between the period 160-
180mins, where we observe many solid red lines (which
appears as a single thick one due to the 30 seconds in-
terval). The 120-140mins period is somewhat surprising.
We would have expected more solid red lines there, but
they only start appearing towards the end of the period.
We believe the algorithm makes early mistakes (minutes
123 and 128), and given that we wait for 5 minutes af-
ter running Tiering, it can only realize later on (∼133),
where it decides that it is actually better not to run.

Acknowledgments
We are grateful to our reviewers and colleagues for their help
and comments on earlier versions of this paper. Special thanks
to our shepherd Mosharaf Chowdhury for his valuable feed-
back. We are also grateful to Hinal Gala, Peihong Huang,
and Jason Chan from the Curator QA team for providing very
useful information for testing the system. Further, thanks
to Chris Wilson from the Performance team for his help in
generating the workloads. This work was supported by the
National Science Foundation (CNS-1318396, CNS-1420703,
CNS-1616774, and CNS-1614717). One of the authors was
supported by the Argentine Ministry of Science, Technology
and Productive Innovation with the program BEC.AR.

	Introduction
	Distributed Storage for Enterprise Clusters
	Cluster Architecture
	Storage System and Associated Data Structures

	Curator
	Curator Architecture
	Curator Management Tasks
	Recovery Tasks
	Data Migration Tasks
	Space Reclamation Tasks
	Data Transformation Tasks

	Policies
	Evaluation
	Customer and Corporate Clusters
	Internal Cluster

	Experiences and Lessons Learned

	Machine Learning-driven Policies
	Motivation
	Background
	Reinforcement Learning (RL)
	Q-Learning

	Use Case: Tiering
	State-Action-Reward
	Function Approximator
	Dataset
	Evaluation

	Related Work
	Conclusions
	Metadata Maps Accessed by Curator
	Benefits/Costs Curator ON/OFF
	OLTP Workloads
	ML-driven Policies Workloads
	ML-driven Policies Results

