
Netbait: a Distributed Worm Detection Service

Brent N. Chun
Intel Research Berkeley

2150 Shattuck Ave. Suite 1300
Berkeley, CA 94704

bnc@intel-research.net

Jason Lee and Hakim Weatherspoon
University of California at Berkeley

Computer Science Division
Berkeley, CA 94720

{jlee81,hweather}@cs.berkeley.edu

ABSTRACT
This paper presents Netbait, a planetary-scale service for
distributed detection of Internet worms. Netbait allows users
to pose queries that identify which machines on a given net-
work have been compromised based on the collective view of
a geographically distributed set of machines. It is based on
a distributed query processing architecture that evaluates
queries expressed using a subset of SQL against a single log-
ical database table. This single logical table is realized using
a distributed set of relational databases, each populated by
local intrusion detection systems running on Netbait server
nodes. For speed, queries in Netbait are processed in paral-
lel by distributing them over dynamically constructed query
processing trees built over Tapestry, a distributed object
and location routing (DOLR) layer. For efficiency, query re-
sults are compressed using application-specific aggregation
and compact encodings.

We have implemented a prototype system based on a sim-
plified version of the architecture and have deployed it on
90 nodes of the PlanetLab testbed at 42 sites spread across
three continents. The system has been continuously run-
ning for over a month now and has been collecting probe
information from machines compromised by both the Code
Red and Nimda worms. Early results based on this data are
promising. First, we observe that by having multiple ma-
chines sharing probe information from infected machines,
we can identify a substantially larger set of infected hosts
that would be possible otherwise. Second, we also observe
that by having multiple viewpoints of the network, Netbait is
able to identify compromised machines that otherwise would
have been difficult to detect in cases where worms have an
affinity to certain regions of the IP address space.

1. INTRODUCTION
With hundreds of millions of machines now widely connected
to the Internet and the disturbing number of remote system
vulnerabilities being discovered on a routine basis, the con-
sequences of an Internet worm epidemic today are profound.

Large-scale epidemics caused by the unleashing of recent In-
ternet worms such as Code Red [4, 6] and Nimda [5] have re-
sulted in millions of host computer infections and over a bil-
lion dollars in financial loss. Cleanup, monitoring, and iden-
tification of Code Red infected systems alone have resulted
in costs approaching $740 million dollars. In recent years,
Internet worms capable of self-replication [26, 27] have been
appearing with alarmingly regularity. Recent work charac-
terizing the behavior of hypothetical Flash worms [28] makes
this even more troublesome given the phenomenal infection
rates Flash worms might be capable of achieving in practice.

In response to recent Internet worm attacks, there have been
essentially three classes of countermeasures that have been
proposed: prevention, containment, and cleanup. Preven-
tion, while highly desirable, is still an active area of re-
search. Part of the complexity here is coping with the mas-
sive amount of hardware and software heterogeneity found
in modern computer systems. Containment, on the other
hand, is a widely used technique which has been applied
in response to virtually all recent epidemics. Content-based
network filtering and the installation of IP address blacklists
which block network traffic from infected hosts are com-
monplace. Cleanup is also a necessary and widely practiced
technique. In the aftermath of a worm epidemic, infected
machines inevitably need to be identified and purged of their
underlying vulnerabilities (e.g., by applying the appropriate
patches). In performing both containment and cleanup, the
key problem that must first be addressed is how to identify
which hosts have been infected in the first place.

This paper presents a new approach to addressing the prob-
lem of how to identify hosts in a network which have been
compromised by an Internet worm. The basic idea underly-
ing our approach is that by viewing the Internet from mul-
tiple geographically distributed vantage points and by shar-
ing this information, we can obtain a more complete view
of the extent and nature of Internet worm epidemics. We
leverage the fact that worms typically replicate themselves
through remote system exploits which have well-known net-
work signatures that are easily detected by modern intrusion
detection systems (IDSs). We use a set of geographically dis-
tributed machines to collect probe information using local
IDSs then share that information by building an efficient
distributed query processing system which exports the col-
lective historical views of all the nodes in the system. In
response to an epidemic, ISPs and network administrators
might then use our system to automatically build blacklists

and to identify infected machines which require cleanup to
prevent further infections. Researchers could obviously also
stand to benefit greatly from use of such a system.

The rest of this paper is organized as follows. In Section 2,
we describe the opportunities afforded by sharing data amongst
geographically distributed sets of machines to perform dis-
tributed detection of Internet worms. In Section 3, we present
an architecture that realizes this sharing using a distributed
query processing architecture. In Section 4, we describe a
prototype implementation of a distributed worm detection
system which has been deployed on 90 nodes of the Planet-
Lab testbed [21] and collecting data for over a month now.
Results, analysis, and implications from this deployment are
then presented in Section 5. In Section 6, we present related
work and finally in Section 7 we conclude the paper and de-
scribe next steps for this work.

2. DISTRIBUTED WORM DETECTION
One common technique for detecting remote machines that
have been infected by an Internet worm is passive detection
of probe attempts. In order to replicate themselves on ad-
ditional machines, Internet worms rely on two mechanisms:
probing of remote machines and exploitation of well-known
remote system vulnerabilities. Code Red, for example, ex-
ploits a buffer overrun bug in Microsoft’s IIS web server to
compromise and infect a target machine. It exploits this bug
by sending IIS a request for a URL with a specific signature
which causes a buffer overrun. Modern intrusion detection
systems such as Snort [24] are capable of detecting these
types of exploits at the packet level by doing real-time traf-
fic analysis and packet logging of IP traffic. IDSs, more
generally, are capable of performing a variety of tasks which
include protocol analysis, content searching/matching, and
detection of a wide assortment of attacks and probes, such as
buffer overflows, stealth port scans, CGI attacks, and SMB
probes. For our purposes, the key capability we are con-
cerned with is real-time detection of probes from machines
infected by an Internet worm.

One important aspect of an Internet worm’s replication al-
gorithm is how it selects target machines to be infected. In
the case of Code Red v1, target machines are selected us-
ing a random IP address. Unfortunately, due to its use of
a static seed in its pseudorandom number generator [17],
Code Red v1 actually selected target IP addresses in pre-
cisely the same sequence by all infected machines. Code
Red v2, released shortly thereafter, corrected this by using
a better seed and subsequently achieved much greater in-
fection rates. Besides Code Red variants, there is another
class of worms which use more sophisticated machinery for
selecting potential victims. Nimda, for example, uses the
following strategy. 50% of the time an address with the
same first two octets will be chosen, 25% of the time an ad-
dress with the same first octet will be chosen, and 25% of
the time, a random address will be chosen. Worms which
have affinity for “nearby” nodes, both in geography and the
IP address space, have the potential to achieve much higher
infection rates due to the performance benefits of network
locality.

The aggregate coverage of the IP address space a collective
worm population is able to achieve during an epidemic can

be substantial. One of the key challenges faced by contain-
ment strategies and post-mortem cleanup following a worm
epidemic is how to identify these infected machines. One
promising approach for addressing this problem is to use
the collective view of a geographically distributed set of ma-
chines running intrusion detection systems, each of which
detects probe attempts from a different network viewpoint.
Given a large enough number of nodes, such a scheme should
allow for much greater coverage of the worm population
since more probes will be received. On the other hand, sim-
ply having many hosts is not enough. During a worm epi-
demic, ISPs often install filtering at various places in their
network. Furthermore, worms which exploit locality in ge-
ographical and network distance may infect a substantial
number of machines locally before leaving its local domain
to infect other machines. In both of these cases, having
multiple machines is not enough; what is needed is multi-
ple geographically distributed machines, each situated at a
different network vantage point.

3. NETBAIT DESIGN
Netbait is a planetary-scale service for distributed detec-
tion of Internet worms. It allows users to pose queries that
identify which machines on a given network have been com-
promised by Internet worms and processes these queries us-
ing a distributed query processing architecture (Figure 1)
in a timely and resource efficient manner. It uses aggregate
information as collected by intrusion detection systems on
a geographically dispersed set of cooperating machines to
obtain greater global knowledge of the extent of an Internet
worm epidemic. By sharing probe information across a large
number of machines, it can identify a substantially larger set
of infected hosts that would be possible otherwise. In addi-
tion, by using multiple viewpoints of the network, it is able
to identify compromised machines that otherwise would be
difficult to detect when worms have an affinity to certain
regions of the IP address space.

Node

Node

Node

NodeNode

Node

Node

Node

Node

netbaitd

snort

RDBMS

Node

Figure 1: Netbait architecture.

At its core, Netbait is essentially a distributed query pro-
cessing system on intrusion detection system data. Queries
are expressed using a subset of SQL and evaluated against
a single logical database table. This single logical table is
physically realized as a set of tables in a distributed set of
relational databases, each populated by intrusion detection

systems running on a geographically dispersed set of cooper-
ating machines. For speed, Netbait queries are processed in
parallel by distributing them over dynamically constructed
query processing trees built over a Tapestry DOLR [32]. For
efficiency, query results are compressed using application-
specific aggregation and compact encodings. Clients are
load balanced across the roots of multiple overlay trees in
order to avoid overloading a single root. Our performance
goals are to be able to support host infection queries on a
100,000 node system on the order of a few minutes.

3.1 Data Collection and Indexing
Each node in Netbait collects probe information from in-
fected machines using an intrusion detection system. We use
the intrusion detection system to essentially observe all re-
quests for network services on a machine and to compare the
signatures of those requests against exploits on well-known
vulnerabilities and log any matches. Matches are then col-
lected by inserting them into a local relational database and
indexing the results. In the proposed implementation, we in-
tend to use Snort, a well-known open-source intrusion detec-
tion system to generate the probe information and the Post-
greSQL relational database to store and index the data. For
Snort, we will install rules that match signatures for all cur-
rently known exploits for all Internet worms. As new worms
are discovered, we can collect two types of data. First, be-
fore the signature of the new worm is detected, we can log
connection attempts. If the Internet is experiencing an epi-
demic, the number of such connection attempts should be
very high and thus should be distinguishable from routine
port scans from random hackers. Second, once the signature
is known, Snort rules that match these signatures are pro-
duced fairly quickly by the open-source community. Once
the new rules are obtained, they simply need to be pushed
out to all the nodes. To make this distribution fast, we
exploit parallelism by using an overlay tree constructed by
Tapestry to push new rules out and install them on local
nodes.

3.2 Overlay Construction and Maintenance
In this section, we discuss how we route the queries to the
nodes and return the results in a timely and efficient man-
ner. Specifically, we use a decentralized object and location
routing (DOLR) to provide fault-tolerance, self-organization
and locality.

3.2.1 Query Processing Trees
Application-level multicast research has focused on resolving
issues in scalability and reliability. Such an infrastructure
must clearly scale to handle our targeted performance goal of
a 100,000 node system and offer probabilistic guarantees of
query delivery to every participating node. Systems based
on epidemic-style protocols [1, 8] have accomplished both
goals, but with the assumption that duplication of messages
is acceptable overhead. However, Netbait not only needs
to dispatch a root’s queries to all other participating nodes
but requires the ability to aggregate these results back to
the root. In this latter case, redundancy of aggregation in-
formation could be prohibitively expensive for certain types
of queries (Section 3.3.1).

Hence we are interested in a spanning tree structure that
allows both the multicasting of queries and the collection

2344

Berkeley

Boston

Los Angeles

5230L1

8F4B L1

L2

8957

L3

8954

L4

8909

04A3
L1

L1

Root

Figure 2: Tapestry. Nodes are connected to other
nodes via neighbor links (→). A node can route to
any other node by resolving one digit at a time, e.g.
5230 =⇒ 8F4B =⇒ 8957 =⇒ 8954. Each unique id is
associated with one particular root node (8954).

of results. The organization must reflect appropriate trade-
offs between fanout and depth to achieve efficient use of
bandwidth and low latency. In order to address the issues
in scalability and reliability, we exploit an overlay substrate,
either a Distributed Hash Table (DHT) or a DOLR, for their
adaptability and robustness to construct the spanning trees
at Internet scale [13]. SCRIBE [2] and Bayeux [33] have
also utilized overlays to create multicast systems but they
are not currently available services.

3.2.2 DOLR & DHT
Overlay substrates, DHTs (e.g., CAN [23], CHORD [29])
and DOLRs (e.g. Tapestry, Pastry [25]), offer the follow-
ing three properties: fault-tolerance, self-organization and
locality. Fault-tolerance should robustly handle the unex-
pected deletion of nodes and loss of these nodes’ information
during queries. The overlay must adapt to a continuously
changing topology, e.g. insertion and deletion of nodes as
well as changes in network latency, and self-organize accord-
ingly. Finally, the query processing tree is bound by the
constraints of bandwidth and network latencies, which in
turn determine the resulting shape, i.e. the fanout and the
depth, of the tree itself. Locality allows for efficient use of
resources to construct such an optimal tree and adjust for
efficient bandwidth and parallelization.

In particular, Tapestry, a wide-area DOLR substrate of Ocean-
Store [14], provides a routing mesh upon which Netbait
could construct its query processing trees. Each Tapestry
node is assigned uniformly at random a unique 40-digit hex-
adecimal address, called a node-ID. These nodes are then
connected in this overlay network via neighboring links to
over node who share node-ID prefixes. A neighboring link’s
level is calculated as one plus the number of matching digits
in the node-IDs.

Routing of messages is thus handled digit by digit over these
neighbor links. For example, Figure 2 shows the path from
node 5230 to node 8954. At every node, we find the neighbor
whose node-ID matches the value of the destination node’s
next digit, and this process is repeated digit by digit. The
resulting path for this example would be 8*** → 89** →
895* → 8954, where *’s represent wildcards. This prefix-
routing mechanism has been inherited from the original work
by Plaxton, Rajaraman and Richa [22]. In other words,
every destination node could be considered the root node
of its own unique spanning tree. This routing mechanism
guarantees, by the reachability property [12], that every leaf
node can route to the root via the appropriate branches in
the spanning tree.

3.2.3 Tree Construction and Maintainence Algorithm
Tapestry has an affinity to choose neighbors that are close
in terms of network latency. Each Tapestry node is the root
of a unique spanning tree. We leverage both the natural lo-
cality and spanning tree properties of Tapestry to construct
a unique query processing tree to disseminate and aggregate
distributed queries. Specifically, Tapestry acheives its local-
ity probabilistically from the number of nodes that match
a given prefix. That is, the number of nodes that match a
given prefix decreases geometrically with the number of dig-
its in the prefix being matched. The probability of matching
d digits is 1/(based), e.g. 1/16 for matching one digit with
an address base of 16. Therefore for a given node, level-1
links connected it to its closest, in terms of network latency,
16 neighbors. The highest possible level labels the neigh-
boring links that connect a node to its furthest neighbors.
(Tapestry currently utilizes network latency in these calcula-
tions for closest neighbors because of the strong correlation
between bandwidth and round trip time [20].)

We then construct the tree with links near the root to be fur-
ther apart than the branches near the leaves, which improves
bandwidth and exploits aggregation for the long hauls to dis-
tant nodes. Once a node has been chosen as a root of a query
processing tree, its neighboring node(s) with the greatest
level are identified as possible children. The prospective
children are then asked whether they are already partici-
pating in a tree with id matching the root and to confirm
with a (N) ACK if they accept this new parent. This pro-
cess is repeated for these confirmed children until no such
child exists that is not already participating in this tree.
As the construction approaches the leaves, the only possi-
ble level for neighboring links will be the Level-1 links, thus
assuring localized organization of the leaves. Moreover, this
construction supports the participation of nodes in multiple
trees and efficiently delivers the queries to the leaves and
results to the root. Finally, this construction is probabilis-
tically guaranteed to efficiently cover all the nodes in the
Netbait network.

Nodes can dynamically insert and delete themselves from
these query processing trees. If a given node chooses to
depart, even unexpectedly, server heartbeats [31] will detect
the failure at its children and its parent. The parent will
remove this deleted node from its list of children, and every
orphaned child will use its redundant backup pointers to
find another parent whose link level matches the missing
node. The orphans will then ask these nodes to become their

children, and by the reachability property of Tapestry, there
will always be a path from these orphaned children to the
root via their new parent. A node insertion alerts the new
neighbors who will then contact this new node and ask for it
to be a child using the same scheme as in the construction of
the tree itself. (After the adoption of this new node, other
nodes can then decide whether to change parents if this node
has a lower network latency, higher bandwidth, etc.)

3.2.4 Optimizations
Although we currently construct the query processing trees
with an emphasis on localized leaves, we are exploring other
configurations. Each node can determine a minimum and
maximum limit for the number of children Sending data
down the tree is obviously a different request than aggregat-
ing the results; we would like to determine if two specialized
trees (i.e. one serving multicast and the other pushing the
data back to the root) would improve bandwidth and la-
tency performances. Finally, we would like to incorporate
some of the features, e.g. limited membership, adaptation
of some gossip paradigms [10] for propagating the multi-
cast message, etc., found in other multicast systems, such
as SCRIBE, Bayeux, HiScamp [9], etc.

3.3 Distributed Query Processing
Netbait uses distributed query processing to evaluate queries
on host infection data. Probe data is stored and indexed lo-
cally on the nodes and queries are pushed out to the nodes
for evaluation. The key reason for adopting a distributed
query processing scheme is scalability and response time.
One of the goals of Netbait is to ultimately support systems
comprised of thousands of Netbait servers and to do this
in a resource efficient manner. In the common case, queries
will mainly be set membership queries. For example, an ISP
such as AT&T might wish to find which of the 16,777,216
hosts in their 12.0.0.8/8 network are infected with any of
the known worms (e.g., Nimda, Code Red, Code Red II,
etc.). This common case of membership queries on a par-
ticular set of network addresses can be heavily optimized.
First, since all nodes have their own local database of probe
information, the query can be evaluated in parallel as all of
the nodes execute the query against probe data stored in
their local relational database. Second, since the common
case is a membership query, the space complexity of a query
result can substantially reduced by aggregating the results
of a set of nodes by simply taking the union of each node’s
membership matches.

3.3.1 Target Workload
In Netbait, we envision two classes of queries in our work-
load. Each of these queries has different requirements in
terms of response time and is targeted to a different class of
users. The first type of query is a query that might be issued
by an ISP or network administrator of an organization (e.g.,
a university). These queries are expected to be membership
queries against a range of IP addresses over some time inter-
val against some set of worms, which often might simply be
all the worms we know about. These queries require fast re-
sponse times. For example, the results of such a query might
be used by an ISP to help construct an address blacklist to
filter out traffic from infected nodes to mitigate the spread of
a worm epidemic. Another common use we envision is using

these queries to discover which nodes are infected within an
organization so those nodes can be cleaned up by a system
administrator, potentially in some automated fashion.

The second class of queries we expect Netbait to see are
queries from researchers (and potentially ISPs) who are in-
terested in analyzing the spread of a worm epidemic. These
types of queries require gathering more data than simply
membership queries. More likely, query results for these
queries will need to return detailed information on each
probe, including the time that each probe occurred. Time
information might be used, for instance, to correlate probes
from different targets in an attempt to reverse engineer how
a new worm is selecting target IP addressees for additional
hosts to infect. Another possible use for these types of
queries is to study how a worm propagates over time in
relation to geographical extent by mapping IP addresses to
longitude and latitude coordinates and by studying where
probes appear over time in relation to these coordinates.
These types of detailed queries do not require real time re-
sponse. Netbait supports these types of queries, but its main
performance optimizations are focused primarily on the first
class of queries.

3.3.2 One Logical Table
Queries in Netbait are evaluated against a single logical
database table. The attributes in this table include data
such as the time of the probe (UTC), the probe host IP’s
addresses, the target host’s IP address (i.e., the PlanetLab
node), and the worm whose signature the probe matched.
Each node has a local relational database that contains a
table with these attributes. When processing a query in
Netbait, we use a tree formed by Tapestry to distribute the
query to all the nodes. Each node then executes the query
locally against its database. Finally, the results are aggre-
gated up the tree starting from the leaves and working their
way back up to the root of the tree and eventually to the
client. Aggregation at each stage of tree involves perform-
ing applications-specific optimizations and using compact
encodings of query results. These optimizations are further
described in Section 3.3.4.

3.3.3 Load Balancing
Netbait uses multiple query distribution trees and load bal-
ances client requests to different trees to avoid having a cen-
tral bottleneck in the system. To do this, Netbait builds
multiple trees on top of Tapestry and constructs the trees
such that the roots of the trees are geographically distributed
around the world. Clients then direct their requests to a
particular tree via Tapestry. As shown in Figure 3, the
root of such a tree, labeled as the ”Netbait root”, adver-
tises its location and service by sending a publish message
to the ”Tapestry root.” (Because this Tapestry root is a sin-
gle point of failure, Tapestry publishes to multiple roots for
fault-tolerance [32].) During the routing of this publish mes-
sage, intermediate nodes store a backpointer to the Netbait
root. Clients would then route towards the Tapestry root
for the desired service, and if they encounter such a back-
pointer, would immediately be directed towards the service
provider.

In another approach, clients could instead choose a tree
based on external means. One possibility is to use DNS

2344

5230L1

8F4B L1

L2

8957

8909

04A3

L1
L3

L2
812389F0

1328
Tapestry Root

8954

1111
L1

L3

1394

L2

L1
0123132A

Boston

Client

Root
Netbait

L3

L4

Los Angeles

New York

Berkeley

L4

Figure 3: Tapestry and Netbait. A server/service
provider (e.g. ”Netbait root) publishes the loca-
tion of the service by sending a message towards
the ”Tapestry root”, leaving backpointers (dotted
arrows) at each hop. Clients locate a service by
sending a message towards the tapestry root until
they encounter a pointer. The client 0123 can lo-
cate a Netbait service provider after only one hop
in this example: 0123 → 1394.

round robin, dynamically update the set of root IP ad-
dresses, and have DNS return a different IP address each
time. Another approach might be to leverage the Ganglia
distributed monitoring system [16], currently deployed on
PlanetLab, to publish IP addresses and port numbers. In
both of these cases, the choice of a root still does not involve
performance considerations between the client and the root
of the tree. In the case of Ganglia, for example, it would be
prudent to query some external network monitoring service
in order to estimate the quality of the path from the client to
each of the roots when choosing which tree to choose from.
The load on the particular root might be another considera-
tion here. That information could be obtained from Ganglia,
which already publishes a variety of metrics including CPU
load, available memory, and so forth.

3.3.4 Aggregation and Encoding
One of the keys to scalability and processing of distributed
queries in an efficient manner is aggregation and compact
encoding of query results as they are propagated back up
the tree to the root. In the common case of a membership
query, consider a client which issues the following query:

SELECT distinct(probeIP) LIKE ’12.0.%.%’

WHERE time > ’2003-01-01’ AND

time < ’2003-01-30’ AND

(worm = ’Code Red’ OR worm = ’Nimda’)

In this query, the client is requesting all IP addresses in the
12.0.0.0/16 network that appear to be infected with either
Code Red or Nimda as determined by probes which were
recorded by one or more PlanetLab nodes during January
2003. This is essentially a membership query on the set
of infected machines for all IP addresses on the 12.0.0.0/16
network. The query result is simply a list of IP addresses
of infected machines. Since the query in this case is just
a membership query, one significant optimization that we
can use is aggregation. For each node in the tree, we take
the union of the node’s results and its children’s results and
pass the aggregated result back up the tree. Furthermore,
since the address list consists of IPV4 addresses and since
we know that this list is likely to be sparse in many cases,
there are additional encoding optimizations we can use to
obtain further savings in representing query results.

One simple way of representing the query results is to sim-
ply to return a sorted list of 32-bit integers, each of which
represents an infected IP address. For large networks (e.g.,
the entire 232 potential hosts on the Internet), the extent of
infections even during a severe worm epidemic is likely to be
small relative to the entire IP address space. For example,
Code Red during its peak infected 359,000 computers on
the Internet. Relative to the entire IP address space this is
only 0.008% of the total number of IP address. Returning a
query result simply as a list of IP addresses in 32-bit binary
form would have required only 1.37 MB of data. Further-
more, given that infected IP addresses are not completely
randomly distributed and the fact that usable IP addresses
are not uniformly spread across the range of addresses from
0.0.0.0 to 255.255.255.255, compressing the results would
add further savings.

Future Internet worms such as hypothetical Flash worms
are capable of achieving significantly greater penetration
into the Internet host population due to its clever use of
techniques to rapidly spread an epidemic. Should such an
epidemic arise, the number of infected hosts in the after-
math could be enormous and vastly exceed the 359,000 in-
fected hosts that were observed as a result of Code Red, by
comparison a relatively simple worm. To be able to han-
dle these types of future cases, Netbait could use other en-
coding tricks. For example, rather than representing each
infected machine with 32-bits, we might simply encode the
“distances” between infected machines in the IP addresses
space and leverage the fact that we will usually require much
less than 32 bits. Another promising approach is to repre-
sent the set of infected machines as a trie, a data structure
popular in the information retrieval and IP routing commu-
nities.

Using either a simple array of binary 32-bit IP addresses or
the distances between IP addresses of infected machines re-
sults in reasonable time and space complexity. Each node in
the query processing tree essentially performs the following
tasks. The node first executes the query against its local
database of host infection information. This data is then
sorted and merged with the data collected from the node’s

children in the query processing tree and passed up the tree
towards the root. Let n be the number of Netbait servers in a
k-ary query processing tree. Let m be the number of infected
hosts on some network of IP addresses. The worst case, per-
node time complexities are then O(m · lg(m)) to sort the list
of infected machines and O(km) to merge the results from
the sort and the results from the node’s k children. Since
merging must be done at each level of the tree, the over-
all time complexity for these steps, excluding local database
queries (which should be fast given proper indexes), is thus
O(lg

k
(n) · (k · m + m · lg(m)).

4. PROTOTYPE
We have implemented a prototype of the Netbait system
based on a simplified version of our architecture. The pri-
mary goals of the prototype were to gain some early ex-
perience with building and deploying a distributed worm
detection system and to gather some initial data to try and
assess the efficacy of sharing probe information across mul-
tiple machines distributed across the wide-area. The pro-
totype system (Figure 4) consists of a netbaitd daemon
that runs on each node of the PlanetLab testbed and a cen-
tral aggregator daemon that collects the data and indexes it.
Each netbaitd daemon collects probe information from ma-
chines infected with either the Code Red or Nimda worms.
Probes are detected through HTTP requests which carry
payloads that match well-known signatures for Code Red
and Nimda exploits via Microsoft IIS web server vulnerabil-
ities. In our system, such requests are observed by running
simple, multithreaded web servers that listen on TCP port
80 and process each incoming request in an identical fashion
by returning a static page and logging the request. Logfiles
generated by the web servers are filtered against a set of
pattern matchers which determine whether a request corre-
sponds to a probe from an infected machine. Matches are
then collected by the netbaitd daemons and periodically
aggregated using XML-RPCs from an aggregator daemon
running on www.planet-lab.org. While our implementa-
tion currently only detects Code Red and Nimda probes
based on web server logfiles, our prototype in principle is
capable of supporting detection of arbitrary worms through
pattern matching on logfiles generated by multiple services.

Node 2Node 1 Node i Node 99 Node 100.

NimdaCodeRed

netbaitd

httpd.log

httpd

Pattern Matchers

Service Logfiles

Services

probes in (t[i], t[i+1])
Return

RDBMSdragnetd

Node 0

Figure 4: Netbait prototype.

5. RESULTS
In this section, we present an analysis of the data collected
by the Netbait prototype over January 2003. The prototype
has been running continuously for over a month now on ap-
proximately 90 nodes of the PlanetLab testbed (Figure 5).
The nodes were located at 42 different sites and scattered
across three continents: North America, Europe, and Aus-
tralia. During the month of January, we observed a total
of 4195 probes from 3495 distinct IP addresses correspond-
ing to machines infected by either the Code Red or Nimda
worms.

Figure 5: The PlanetLab testbed as of January 2003.
The testbed currently consists of approximately 100
nodes at 42 sites scattered across three continents.

Figure 6a plots the total number of unique Code Red probes
detected by Netbait on 90 PlanetLab nodes. Consistent with
previous work [4], we observe Code Red’s cyclic behavior
with three distinct phases of scanning and replication (1st to
the 19th), an attempted distributed denial of service (DDoS)
attack on www.whitehouse.gov (20th to the 27th), and an
indefinite sleep phase beginning on the 28th. Because no
probes are attempted from the 20th of the month and on,
we cannot directly observe the transition from the DDoS
attack phase to the sleep phase. However, we can observe
a rise in probes from infected machines at the beginning of
the month. This resurgence following a lull of activity at
the end of the previous month is due essentially to machines
with bad clocks continuing to probe and replicate when they
ought to be sleeping. The lack of global clock synchroniza-
tion is basically what restarts the Code Red cycle and causes
Code Red to perpetuate. On the 20th, for example, we ob-
served two Code Red probes and on the 21st, we observed
an additional probe.

Similar to Code Red, Figure 6b plots the total number of
unique Nimda probes detected by Netbait as a whole run-
ning on 90 PlanetLab nodes. The Nimda worm [5] prop-
agates through a variety of exploits including email, open
network shares, client browsing of compromised web sites,
Microsoft IIS vulnerabilities, and back doors previously cre-
ated by the Code Red II [6] and sadmind/IIS [3] worms. In
the results shown here, we only account for Nimda probes
which attempt to exploit Microsoft IIS vulnerabilities. As
with Code Red, we identify a probe by running a web server
on each PlanetLab machine and by matching the URL re-
quested against well-known probe signatures, here ones cor-
responding to Nimda IIS exploits. Unlike Code Red, the
data shows that Nimda infected machines are probing Plan-
etLab constantly with an average of approximately 90 probes

a day. This constant probing is consistent with Nimda’s
replication strategy, which does not exhibit a cyclical pat-
tern as with Code Red.

5.1 Benefits of Sharing
In Figures 7a and 7b, we show the distribution of unique
Code Red and Nimda probes for each of the 90 PlanetLab
machines running the Netbait server. The key observation
here is that by having multiple machines sharing probe in-
formation, the system is capable of identifying a substan-
tially larger set of infected hosts compared to a single ma-
chine. For Code Red, the benefits achieved through sharing
of information are substantial. We observe that out of 1971
probes from Code Red machines spread across 90 Planet-
Lab machines, 1851 of those probes were from unique IP
addresses. Having more machines in this case is clearly ben-
eficial, especially given that Code Red v2 fixed the pseudo-
random number generator seed problem in Code Red v1 and
hence probes target machines more uniformly across the IP
address space. At the same time, however, we observe that,
despite a full three weeks of Code Red activity, there was
very little overlap in the probes detected by different Plan-
etLab machines. We conjecture that filtering of Code Red
traffic at ISPs and the effect of DHCP for ADSL and cable
modem users may be a contributing factor here. For Nimda,
the benefit of having multiple machines is also clear. In this
case, however, we see that the probe attempts are much
more localized compared to Code Red. We hypothesize this
is due to a combination of Nimda’s affinity to certain regions
of the IP address space and post-epidemic ISP filtering of
Nimda traffic.

5.2 Benefits of Multiple Viewpoints
In Figures 7c and 7d, we plot the distribution of unique
Code Red and Nimda probes for each of the 42 PlanetLab
sites. The key point of these graphs is that by observing
an epidemic from multiple, geographically distributed van-
tage points, we can identify infected machines that would
otherwise have been difficult to detect. One case where this
advantage comes into play is in the detection of machines in-
fected with worms that have affinity to certain regions of the
IP address space (e.g., to speed the rate of infections). An-
other case is the detection of infected machines post-mortem
after widespread filtering of worm replication traffic at ISPs
has already been deployed. In both cases, having machines
that are diverse in both geography and the IP address space
is beneficial. For example, despite three full weeks of Code
Red probing and replication, each PlanetLab site still ob-
served a large number of probe attempts from distinct IP
addresses. If no filtering was being done, we would expect
that sites would experience much greater overlap in the set
of Code Red infected machines probing them.

In the case of Nimda, we observe a combination of what is
likely two effects. First , when Nimda chooses target ma-
chines, it has an affinity for certain regions of the IP address
space. 50% of the time an address with the same first two
octets will be chosen, 25% of the time an address with the
same first octet will be chosen, and 25% of the time, a ran-
dom address will be chosen. From Figure 7d, we see that the
effect of this affinity to “nearby” IP addresses is fairly pro-
nounced. A second factor that also is likely also coming into
play here is ISP filtering of Nimda probe attempts. In the

0

20

40

60

80

100

120

140

160

180

200

5 10 15 20 25 30

N
um

be
r

of
 u

ni
qu

e
pr

ob
es

Day

Unique Code Red probes in January 2003 on PlanetLab

(a) Code Red

10

20

30

40

50

60

70

80

90

100

110

5 10 15 20 25 30

N
um

be
r

of
 u

ni
qu

e
pr

ob
es

Day

Unique Nimda probes in January 2003 on PlanetLab

(b) Nimda

Figure 6: Total unique Code Red (a) and Nimda (b) probes detected by Netbait on 90 PlanetLab nodes in
January 2003.

aftermath of the Nimda epidemic, many ISPs installed filters
in their routers to filter Nimda probe traffic in an attempt
to mitigate the spread of the infection. Two years later, we
observe that these filters appear to still be in place. Our
data shows that out of the 42 PlanetLab sites, half of the
sites observed three or fewer Nimda probes from distinct
IP addresses while a small number of sites accounted for
nearly all of the probes detected. In the latter case, having
those handfuls of extra machines situated nearby infected
machines allowed us to observe infections that the majority
of the other PlanetLab sites were unable to detect.

5.3 Summary
In summary, we observe that Netbait’s approach of having
multiple geographically dispersed machines sharing probe
information from machines infected with Internet worms is
beneficial. These benefits come from a combination of two
effects. First, by sharing the results across multiple ma-
chines, Netbait is able to identify a substantially larger set
of infected hosts simply by having more distinct IP addresses
available to be probed. Second, by having spreading these
machines out over the world on many different networks,
we achieve greater coverage both in terms of the IP address
space and in geographical extent. The former is important
for identifying infected machines which have affinity to cer-
tain regions of the IP address space (e.g., to speed infec-
tion). The latter is important for identifying infected ma-
chines during a response to a worm epidemic and during the
inevitable post-mortem cleanup phase. Even after a worm
is largely contained (e.g., by blocking its traffic at all major
ISPs), infected machines within various organizations still
need to be identified and purged by system administrators
to make them usable again and to reduce potential financial
liability.

6. RELATED WORK
Dshield [7] is a platform that allows firewall users to share
intrusion detection information. Users contribute intrusion
detection information by running client programs that col-

lect local firewall logfiles and submit them to the DShield
team via email or a web-based interface. Contributed log-
files are stored in a centralized database which can then be
queried to determine if a particular machine has been com-
promised and to help produce summary reports of various
Internet worm epidemics. Compared to Netbait, Dshield
shares similar goals. Architecturally, however, Netbait dif-
fers in several key respects. First, Netbait is a based on
a distributed query processing architecture that supports
“real time”, resource efficient queries, as opposed to queries
on data manually aggregated into a centralized database.
Second, Netbait completely automates data aggregation in
response to queries by dynamically discovering which nodes
are available and contributing and by aggregating their con-
tributions using an efficient overlay network (i.e., no manual
submission or parsing of logfiles is necessary). Finally, since
all machines are currently trusted, Netbait does not need to
take malicious users who submit false reports into account 1,
thereby simplifying its design.

A number of studies have been done on characterizing the
macroscopic behavior of Internet worm epidemics using an-
alytical modeling and simulation. In [28], Staniford, Pax-
son, and Weaver develop analytical models characterizing
the rates of infection for recent Internet worms including
Code Red, Code Red II, and Nimda, as well as hypothetical
Flash worms. In [18], Moore et al. develop similar models
based on infection models used in the public health commu-
nity and use them to quantify the effectiveness of different
worm containment techniques, such as content filtering and
address blacklisting. The detailed and timely analyses pro-
vided by researchers at CERT and CAIDA in response to
recent Internet worm epidemics also fall into the analysis
space. Compared to Netbait, these efforts are largely com-
plementary. One possibility we see as a potential synergy

1Being able to support faulty and malicious nodes is an in-
teresting avenue for future work. The results of such efforts
would likely be applicable to both Netbait and systems like
DShield.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 u

ni
qu

e
pr

ob
es

Node

Unique Code Red probes for each PlanetLab node in January 2003

(a)

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 u

ni
qu

e
pr

ob
es

Node

Unique Nimda probes for each PlanetLab node in January 2004

(b)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 u

ni
qu

e
pr

ob
es

Site

Unique Code Red probes for each PlanetLab site in January 2003

(c)

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 u

ni
qu

e
pr

ob
es

Site

Unique Nimda probes for each PlanetLab site in January 2003

(d)

Figure 7: Unique Code Red (a) and Nimda (b) probes detected by each of the 90 PlanetLab nodes running
Netbait in January 2003. Unique Code Red (c) and Nimda (d) probes detected by each of the 42 PlanetLab
sites in January 2003.

is to use Netbait’s historical observations of Internet worm
behavior to drive the validation of various analytical models
and simulations of large-scale Internet worm behavior.

Honeypots are systems that are specifically configured to be
either probed, attacked, or fully compromised by remote at-
tackers. Their main purpose is to acquire knowledge of a
remote attacker’s techniques as a means for developing bet-
ter defenses. In their probe-only and attack configurations,
honeypots bear a striking resemblance to the individual data
collection components in Netbait. In these configurations,
honeypots detect probes and attacks from remote machines
through use of an intrusion detection system but do not
allow the system to be actually compromised. Such a con-
figuration is precisely what the data collection components
in Netbait accomplish. Indeed, one way one to characterize
Netbait might be to view it as a distributed query processing
system over honeypot data as collected by a set of cooper-

ating machines spread over the wide-area.

Distributed query processing systems capable of performing
queries over large collections of nodes in a scalable, robust,
and resource efficient manner have been a topic of much in-
terest lately. In the realm of sensor networks, TinyDB [15]
processes distributed queries over networks of low-power,
wireless sensors in a time and energy efficient and fault tol-
erant manner. IRISNet [19] is distributed query system
for querying and mining Internet-scale systems composed
of large collections of sensors, such as webcams. Compared
to TinyDB, IRISNet focuses on sensors which are richer in
computational capabilities and are not power constrained.
PIER [11] is a distributed dataflow query engine based on
distributed hash tables. It supports a dataflow-diagram
style scripting language, with built-in support for DHT-
based joins (including Bloom filters), grouping, filtering and
aggregation. Finally, Astrolabe [30] is a distributed infor-

mation management system intended for large-scale, highly
dynamic Internet applications. It uses peer-to-peer gossip-
ing, hierarchy, and makes heavy use of aggregation for ro-
bustness against failures and for scalability. One interest-
ing area for future work might be to build Netbait on a
general-purpose system like PIER or Astrolabe and to com-
pare it with our specialized implementation in terms of per-
formance, resource usage, functionality, and system com-
plexity.

7. CONCLUSION
In this paper, we presented Netbait, a planetary-scale service
for distributed detection of Internet worms. Netbait is based
on a distributed query processing architecture. It processes
queries over dynamically constructed query processing trees
built on the Tapestry DOLR and uses application-specific
aggregation and compact encodings of query results to pro-
cess queries in a resource efficient manner. We have imple-
mented a prototype implementation of Netbait based on a
simplified version of the architecture and have deployed it on
90 nodes of the PlanetLab testbed at 42 sites spread across
three continents. Preliminarily results based on one month’s
worth of data collection shows that Netbait’s approach of
sharing probe information across multiple machines in the
wide-area is quite promising. By sharing information across
machines, we observe that Netbait is able to identify a sub-
stantially larger set of infected hosts than would be possible
with only a limited set of network viewpoints. Further, we
also observe that by spreading these machines over many
different networks, we are also able to identify infected ma-
chines which have affinity to certain regions of the IP address
space.

Our long-term goal is to build a Netbait system that is ca-
pable of scaling to 100,000 hosts and processing distributed
queries on the order of a few minutes such that ISPs and
network administrators can rapidly respond to an Internet
worm epidemic. Towards this end, our immediate plans are
first to build a full implementation of the Netbait distributed
query processing system as described in this paper, to de-
ploy it on PlanetLab, and to measure its performance in
response to various workloads. Key research problems that
will require further investigation include scalability, robust-
ness, and how to cope with faulty and malicious hosts. Even
at the scale of hundreds of machines in early deployment,
Netbait will still provide a valuable service to the Inter-
net community. For example, despite the fact that Code
Red and Nimda have been largely contained, their presence
on the Internet still remains, as observed by the probes we
received from thousands of Code Red and Nimda infected
machines. For worms that have yet to emerge, Netbait will
offer even greater benefits to ISPs, allowing for significant
automation in the cleanup process during a post-worm epi-
demic, thereby drastically reducing the financial costs in-
curred by such activities.

8. REFERENCES
[1] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao,

M. Budiu, and Y. Minsky. Bimodal multicast.
Technical Report 98-1665, Cornell University,
Department of Computer Science, 1999.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, and

A. Rowstron. Scribe: A large-scale and decentralized
application-level multicast infrastructure. IEEE
Journal on Selected Areas in Communications, 20(8),
October 2002.

[3] CERT. Cert advisory ca-2001-11: sadmind/iis worm,
May 2001.

[4] CERT. Cert advisory ca-2001-19: Code red worm
exploiting buffer overflow in iis indexing service dll,
July 2001.

[5] CERT. Cert advisory ca-2001-26: Nimda worm,
September 2001.

[6] CERT. Cert incident note in-2001-09: Code red ii:
Another worm exploiting buffer overflow in iis
indexing service dll, August 2001.

[7] DShield.org. Distributed intrusion detection system.
http://www.dshield.org, November 2000.

[8] P. Eugster, S. Handurukande, R. Guerraoui, A.-M.
Kermarrec, and P. Kouznetsov. Lightweight
probabilistic broadcast. In Proceedings of The
International Conference on Dependable Systems and
Networks, July 2001.

[9] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie.
Hiscamp: self-organizing hierarchical membership
protocol. In Proceedings of the SIGOPS European
Workshop 2002, September 2002.

[10] I. Gupta, A.-M. Kermarrec, and A. J. Ganesh.
Efficient epidemic-style protocols for reliable and
scalable multicast. In Proceedings of the 21st
Symposium on Reliable Distributed Systems, October
2002.

[11] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo,
S. Shenker, and I. Stoica. Complex queries in
dht-based peer-to-peer networks. In Proceedings of the
1st International Workshop on Peer-to-peer Systems,
March 2002.

[12] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Zhao.
Distributed object location in a dynamic network. In
Proceedings of the Fourteenth ACM Symposium on
Parallel Algorithms and Architectures, August 2002.

[13] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F.
Kasshoek, and J. James W. O’Toole. Overcast:
Reliable multicasting with an overlay network. In
Proceedings of the Fourth Symposium on Operating
System Design and Implementation, October 2000.

[14] J. D. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
Oceanstore: An architecture for global persistent
storage. In Proceedings of the Ninth International
Conference on Architectural Support for Programming
Languages and Operating Systems, November 2000.

[15] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tag: a tiny aggregation service for ad-hoc
sensor networks. In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation,
December 2002.

[16] M. L. Massie, B. N. Chun, and D. E. Culler. The
ganglia distributed monitoring system: Design,
implementation, and experience, 2003. Submitted for
publication.

[17] D. Moore, C. Shannon, and J. Brown. Code-red: a
case study on the spread and victims of an internet
worm. In Proceedings of the SIGCOMM Internet
Measurement Workshop 2002, August 2002.

[18] D. Moore, C. Shannon, G. Voelker, and S. Savage.
Internet quarantine: Requirements for containing
self-propagating code. In Proceedings of the 2003
IEEE Infocom Conference, April 2003.

[19] S. Nath, A. Deshpande, P. B. Gibbons, and S. Seshan.
Mining a world of smart sensors. Technical Report
IRP-TR-02-05, Intel Research Pittsburgh, August
2002.

[20] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose.
Modeling tcp throughput: A simple model and its
empirical validation. In Proceedings of the ACM
SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communication, October 1998.

[21] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A
blueprint for introducing disruptive technology into
the internet. In Proceedings of the 1st Workshop on
Hot Topics in Networks (HotNets-I), 2002.

[22] C. G. Plaxton, R. Rajaraman, and A. W. Richa.
Accessing nearby copies of replicated objects in a
distributed environment. In Proceedings of the 9th
Annual Symposium on Parallel Algorithms and
Architectures, June 1997.

[23] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proceedings of the ACM SIGCOMM ’01 Conference
on Communications Architectures and Protocols,
August 2001.

[24] M. Roesch. Snort - lightweight intrusion detection for
networks. In Proceedings of the 13th Systems
Administration Conference (LISA ’99), 1999.

[25] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proceedings of the 18th
IFIP/ACM International Conference on Distributed
Systems Platforms, November 2001.

[26] J. F. Shoch and J. A. Hupp. The worm programs:
Early experiences with distributed systems.
Communications of the ACM, 25(3), March 1982.

[27] E. H. Spafford. The internet worm program: An
analysis. Technical Report CSD-TR-823, Purdue
University, 1988.

[28] S. Staniford, V. Paxson, and N. Weaver. How to 0wn
the internet in your space time. In Proceedings of the
11th USENIX Security Symposium, August 2002.

[29] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings
of the ACM SIGCOMM ’01 Conference on
Communications Architectures and Protocols,
September 2001.

[30] R. van Renesse, K. P. Birman, and W. Vogels.
Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and data
mining. ACM Transactions on Computer Systems,
2003.

[31] H. Weatherspoon and J. D. Kubiatowicz. Efficient
heartbeats and repair of softstate in decentralized
object location and routing systems. In Proceedings of
the SIGOPS European Workshop 2002, September
2002.

[32] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.
Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report
CSD-01-1141, University of California, Berkeley,
Computer Science Division, 2000.

[33] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz,
and J. D. Kubiatowicz. Bayeux: An architecture for
scalable and fault-tolerant wide-area data
dissemintation. In Proceedings of the Eleventh
International Workshop on Network and Operating
System Support for Digital Audio and Video, June
2001.

