
Mirage: A Microeconomic Resource Allocation System for Sensornet Testbeds

Brent N. Chun∗ Philip Buonadonna∗ Alvin AuYoung‡ Chaki Ng† David C. Parkes†

Jeffrey Shneidman† Alex C. Snoeren‡ Amin Vahdat‡

†Harvard ∗Intel Research Berkeley ‡UCSD
https://mirage.berkeley.intel-research.net

Abstract

SensorNet testbeds are critical for understanding and meet-
ing the technical challenges of wireless SensorNets. As the
size and demand for these testbeds grow, resource manage-
ment will become increasingly important to the effectiveness
of these environments. In this paper, we argue that a microe-
conomic resource allocation scheme, specifically the combina-
torial auction, is well suited to testbed resource management.
To demonstrate this, we present the Mirage resource allocation
system. In Mirage, testbed resources are allocated using a re-
peated combinatorial auction within a closed virtual currency
environment. Users compete for testbed resources by submit-
ting bids which specify resource combinations of interest in
space/time (e.g., “any 32 MICA2 motes for 8 hours anytime
in the next three days”) along with a maximum value amount
the user is willing to pay. A combinatorial auction is then pe-
riodically run to determine the winning bids based on supply
and demand while maximizing aggregate utility delivered to
users. We have implemented a fully functional and secure pro-
totype of Mirage and have been operating it in daily use for
approximately four months on Intel Research Berkeley’s 148-
mote SensorNet testbed.

1 Introduction

SensorNet testbeds are critical for understanding and meet-
ing the technical challenges of wireless SensorNets. Such
testbeds provide a means for developing and evaluating Sen-
sorNet technology in a controlled and instrumented environ-
ment. A canonical testbed incorporates a collection of com-
pute and sensing nodes that are coupled together by an out-
of-band communication channel and a power supply. This
channel provides for remote control, reprogramming and data
collection independent of a node’s wireless capabilities. The
power supply eliminates the need to replace batteries, reducing
the physical maintenance needs of the testbed.

As with any large-scale system, resource management be-
comes a key aspect of testbed operation. Frequently, the in-
frastructure of a large testbed represents a significant capital
cost to build and operate. Thus, it becomes more economical

to share the testbed among users. The wholesale allocation of
an entire testbed’s resources to a single application or user is
not desirable and frequently unnecessary. A method for parti-
tioning the testbed based on user requirements provides a more
efficient means of operation.

Current schemes for testbed resource allocation suffer from
key shortcomings, falling short of meeting real user demands
on a large system. First, they either lack or have inadequate
mechanisms for resolving contention among competing users
during times of peak demand. This often requires direct sys-
tem administrator intervention to resolve conflicts. Second,
they provide limited mechanisms for expressing resources,
making it difficult for users to express desired resources and
their associated constraints. This, in turn, affects the efficient
utilization of the underlying resources by limiting the system’s
ability to make intelligent allocations for multiple users.

We argue that microeconomic resource allocation using a
combinatorial auction is well suited to address these issues of
SensorNet testbed resource management. To demonstrate this,
we have implemented the Mirage testbed management system.
In Mirage, resources are allocated using a combinatorial auc-
tion [3, 11]. Users submit bids specifying resource combina-
tions of interest in space/time (e.g., “any 32 MICA2 motes for
8 hours anytime in the next three days”) along with a maxi-
mum value amount the user is willing to pay. A combinato-
rial auction is then periodically run to determine the winning
bids based on supply and demand while aiming to maximize
aggregate delivered utility. Given that testbed users are typ-
ically interested in collections of nodes and are often indif-
ferent to different allocations (as long as they meet the user’s
constraints) and averse to partial allocations, we believe that
a combinatorial auction provides a more effective means for
testbed resource allocation compared to alternatives.

In this paper, we describe the motivation, design, and im-
plementation of Mirage. We also present details on our ex-
perience to date with a Mirage deployment on a 148-mote
SensorNet testbed at Intel Research Berkeley (IRB), where
Mirage currently serves as the sole means of getting phys-
ical access to testbed resources. Given the desirability of
testbeds for SensorNet development and the growing user
community for such testbeds, our deployment serves as a nice

”laboratory” for studying how beneficial microeconomic ap-
proaches to resource allocation are relative to all of the theo-
retical/algorithmic work that has gone on in this space in the
past. Our primary technical contributions in this paper include:

• The design and implementation of a microeconomic re-
source allocation system for SensorNet testbeds that is
part of a fully functional and deployed system. While
previous work has largely explored the theoretical and
algorithmic nature of microeconomic-based systems or
presented “paper designs” of such systems, we believe
that experience with working prototypes and real-world
deployments are fundamental to shaping the research
agenda in this space.

• A practical virtual currency policy with two novel compo-
nents: (i) proportional-share profit sharing, to allow idle
users to accumulate transient credit and (ii) a savings tax,
which implements a “use it or lose it” policy to address
highly imbalanced usage patterns. While microeconomic
resource allocation has been explored in previous work,
the majority of these efforts have not addressed this is-
sue, opting instead to focus on either specific subsets of
microeconomic system design or assuming the use of real
money.

• Experience with an ongoing real-world deployment of
our system on a 148-mote SensorNet testbed. Early expe-
rience over a four-month period indicates that demand for
testbed resources is bursty, that users place significantly
different value on these resources, and points to evidence
of strategic user behavior. Feedback from users has also
validated some of our early intuition about features (e.g.,
the need for sets of motes that meet specific physical con-
straints) of the problem that make SensorNet resource al-
location non-trivial and, guided by real user needs, has
pointed to future research directions.

The rest of this paper is organized as follows. In Section 2,
we provide background and motivation on the testbed resource
allocation problem. In Section 3, we present the design of
Mirage, a microeconomic resource allocation system aimed to
address this problem. In Section 4, we describe our prototype
implementation. In Section 5, we describe our experience to
date with real usage on an ongoing Mirage deployment on a
148-mote SensorNet testbed at Intel Research Berkeley. In
Section 6, we describe related work and finally, in Section 7,
we conclude the paper and describe future work.

2 Background and Motivation

The initial motivation for this work became apparent during
the construction of a 148-node SensorNet testbed at the In-
tel Research laboratory in Berkeley, CA. This testbed is com-
prised of 97 Crossbow MICA2 and 51 Crossbow MICA2DOT

series sensor nodes, or motes, mounted uniformly in the ceil-
ing of the lab. The motes incorporate an Atmel ATmega128
8-bit microcontroller, 4KB of RAM, 128KB of flash memory,
and a Chipcon CC1000 FSK radio chip. The MICA2 series
devices in the testbed operate in the 433 MHz ISM band and
incorporate a sophisticated sensorboard that can monitor pres-
sure, temperature, light, and humidity. The MICA2DOT de-
vices operate in the 916MHz ISM band and do not include
sensorboards.

The motes are coupled to the lab’s wired production net-
work using the Crossbow MIB600 Ethernet programming
board. This device is based on a design developed at Intel Re-
search which provides power, remote programming and out-
of-band monitoring/debugging though a TCP/IP over Ethernet
channel. Power is provided to each mote via the MIB600 us-
ing IEEE 802.3af power over Ethernet and can be centrally
controlled from the network switch. The capabilities of the
MIB600 are useful for creating large testbeds with minimal
infrastructure and upkeep requirements. When the testbed was
placed in service, the demand for its resources by several users
was immediate, motivating the need for an effective manage-
ment system.

2.1 The Case for Auction-based Resource Allo-
cation

When contention for shared resources arises, a fundamental
question is how to prioritize different users vying for access to
common resources. Complicating matters further are tenden-
cies for testbed system usage to be bursty and for users to have
differential value on the resources being contended for (e.g.,
using resources for testing vs. using resources to perform a
critical experiment leading up to a conference deadline). In
Figure 1, we show testbed utilization for 97 MICA2 motes
and 51 MICA2DOT motes on a 148-mote SensorNet testbed
at Intel Research Berkeley over a period of four months. Ex-
amining the graphs, we see that demand for testbed resources
is very bursty, with noticeable bursts in early December, early
February near the SIGCOMM ’05 conference deadline, and in
late March / early April near both the NSDI ’05 camera-ready
deadline and the ACM SenSys ’05 conference deadline. Fur-
ther, as described in Section 5, the value (as determined by an
auction) that users placed on allocations over this four month
period varied over four orders of magnitude, suggesting highly
varying levels of immediacy and importance in testbed usage.

The observed usage characteristics of the testbed suggest
two requirements for a resource allocation system. First, there
needs to be a systematic way to prioritize resource requests and
second, users should be able to express the importance of their
requests to use the testbed. The first requirement is motivated
by the fact that testbed usage is bursty and that contention is
a real phenomena, often occurring at the most important of
times. The second requirement is driven by the fact that user
valuations for resources varies significantly (Section 5) and

0

20

40

60

80

100

0 20 40 60 80 100 120

T
ot

al
 M

IC
A

2
U

til
iz

at
io

n
(%

)

Days since Dec 9, 2004

(a) MICA2 utilization

0

20

40

60

80

100

0 20 40 60 80 100 120

T
ot

al
 M

IC
A

2D
O

T
 U

til
iz

at
io

n
(%

)

Days since Dec 9, 2004

(b) MICA2DOT utilization

Figure 1: Testbed utilization on the Intel Berkeley Lab’s 148-mote SensorNet testbed from Dec 9, 2004 to Apr 8, 2005.

thus, computing an efficient (i.e., a socially optimal alloca-
tion in terms of aggregate delivered utility) allocation requires
additional information.

These requirements point towards the use of an auction-
based resource allocation system. Owing to its use as a bidding
process, auctions are ideally suited for eliciting the widely
varying valuations that testbed users have. The ability to ex-
press a valuation explicitly combined with the fact that users
bid using finite currency addresses both of our requirements.
When testbed demand is high, users with the highest valu-
ations get priority (using currency that was accumulated by
making judicious use of testbed resources during previous pe-
riods of contention). When users place varying levels of im-
portance on their requests, they simply bid higher or lower as
needed. Contrast this to other scheduling schemes such as
first-come first-serve (FCFS), fair-share, etc. which provide
no means to explicitly express the importance of a request and
thus, fundamentally operate with strictly less information, de-
livering less overall utility.

2.2 Combinatorics of SensorNet Testbed Allo-
cation

Users of a SensorNet testbed are frequently interested in ac-
quiring combinations of resources that simultaneously meet
certain constraints. Consider a machine learning researcher
interested in testing distributed inference algorithms in sensor
networks. Such a user might be interested in evaluating al-
gorithms at a moderate scale while performing inference over
temperature and humidity readings of the environment. The
user’s code might also be tailored to a particular type of de-
vice (e.g., a MICA2 mote) and need to run on a different,
appropriately-spaced frequency to avoid crosstalk from other
experiments. Thus, the user’s abstract resource specification
might call for “any 64 MICA2 motes, operating on an unused

frequency, that have both a temperature and a humidity sen-
sor”.

The resource combinations that users of a SensorNet testbed
are interested in often have the property that there are both
substitutes and complementaries. In the machine learning ex-
ample above, for instance, the user is not concerned with the
specific allocation of MICA2 motes as long as a total of 64
are available. Hence, MICA2 motes are substitutes for one an-
other. Similarly, the user does care that 64 motes are allocated
simultaneously. A partial allocation of, say, 8 motes would not
meet the user’s needs in this case since the user’s intention was
to test at a moderate scale. Thus, the 64 motes can be viewed
as being complimentary to one another.

Resource allocation problems involving substitutes and
complementaries are well-suited to a combinatorial auction.
Users submit bids specifying desired resource combinations
along with a maximum amount the user is willing to pay. The
auction, in turn, computes a set of winning bids that maxi-
mizes total revenue. Since users use virtual currency to ex-
press value, the allocation that maximizes revenue collected
maximizes the aggregate stated value delivered to users of the
system. Given a sufficiently expressive bidding language, user
preferences on both substitutes and complementaries can be
captured and hence more efficient global allocations can be
achieved using a combinatorial auction. In Mirage, we use a
repeated combinatorial auction to periodically allocate testbed
resources both in space and time.

3 Mirage

In this section, we present the design of Mirage, a microe-
conomic resource allocation system for SensorNet testbeds.
We assume each user has a value associated with a desired re-
source allocation and the primary goal of the system is to max-
imize aggregate value. To maximize aggregate value, Mirage

relies on a repeated combinatorial auction [3, 11]. In such an
auction, users submit bids specifying resource combinations
of interest and the amount of virtual currency the user is will-
ing to pay. Periodically, the auction clears, a set of winning
bids is computed, and trades are settled through payments to a
central bank. In this section, we describe the three main com-
ponents that make up Mirage: the resource discovery service,
the repeated combinatorial auction, and the central bank.

3.1 Resource Discovery

In Mirage, users specify the type of resources they are inter-
ested in using abstract resource specifications. A resource dis-
covery service then maps these specifications to concrete re-
source sets that meet the desired constraints. We use this level
of indirection for three reasons. First, it frees the user from
having to manually identify candidate resources. Second, it
allows users to automatically take advantage of new resources
as they are introduced into the system. Finally, testbed users
frequently wish to acquire sets of nodes but are indifferent to
the specific nodes allocated as long as they meet user con-
straints. The resource discovery service allows users to dis-
cover all possible candidates and thus provide the system with
the maximal amount of information on substitutes when clear-
ing the auction.

Abstract resource specifications allow users to specify con-
straints on the types of resources they seek to acquire. For
example, testbed users often need to specify constraints on
per-node attributes. In other cases, constraints on inter-node
attributes may be necessary. For example, a user might wish
to acquire “8 motes where each pair of motes is at least 10 me-
ters apart” to ensure that communication requires a multi-hop
routing layer. Currently, our prototype supports resource dis-
covery using per-node attributes including mote type, sensor
board type, and supported frequency range. We are currently
investigating how best to incorporate constraints on inter-node
attributes into the system.

3.2 Repeated Combinatorial Auction

Mirage uses a first-price, repeated combinatorial auction to al-
locate resources to competing users over time. In this setting,
an auction is run periodically. During each round, there are
multiple buyers (the competing users) and a single seller who
sells resources on the system’s behalf. All bids submitted prior
to the start of a round are considered. The auction will then cal-
culate winning bids, their payments, and associated resource
allocations.

Users submit bids to the auction using a two-phase process
(Figure 2). First, they use the resource discovery service to
find candidate nodes that meet their constraints. Second, using
concrete nodes identified from the first step, they place bids in
the auction using the Mirage bidding language.

Since time is a critical aspect of resource allocation (e.g.,
resources near a conference deadline), resource combinations

Resource
Discovery Auction

Client

Abstract
Resources

Concrete
Resources Bid

Win/Lose

Resource
Valuation

Resource
Request

1. 1.

2.

3. 4. 5.

Figure 2: Bidding and Acquiring Resources.

specify resources in both space and time. Formally, a bid bi in
Mirage is specified as follows:

bi = (vi, si, ti, di, fmin, fmax, ni, oki) (1)

Bid bi indicates the user wants any combination of ni motes
from the set oki (obtained through resource discovery) for a
duration of di hours, a start time anywhere between si and
ti, and a frequency in the range [fmin, fmax]. The user also
is willing to pay up to vi units of virtual currency for these
resources. Continuing with the distributed inference example,
a user thus might say: “any 64 MICA2 motes, which have both
a temperature and a humidity sensor, operating on an unused
frequency in the range [423 MHz, 443 MHz], for 4 consecutive
hours anytime in the next 24 hours”. Suppose the user used
the resource discovery service and found 128 motes meeting
the desired resource specification and valued the allocation at
99 units of virtual currency. The corresponding bid in this case
would thus be:

bi = (99, 0, 20, 4, 423, 443, 64, list of 128 motes) (2)

The goal of the system in each round is to clear the auc-
tion such that the winning bids maximize the amount of rev-
enue collected by the system. Since users use currency to ex-
press value, the allocation that maximizes revenue maximizes
the aggregate delivered value and thus can be viewed as be-
ing socially optimal. This problem of computing a revenue-
maximizing allocation in a combinatorial auction is known as
the winner determination problem and is known to be NP-
hard by reduction from weighted set packing [14]. Thus, in
our prototype, we currently use a greedy heuristic to compute
the set of winning bids. We are also currently investigating
a mixed-integer program formulation using CPLEX, a com-
mercial, linear-programming based, branch-and-cut solver for
mixed integer programs.

3.3 Central Bank

Mirage supports virtual currency, because charging real cur-
rency in our environment is impractical. To support virtual
currency, Mirage relies on a central bank to enforce currency
policy. A good virtual currency policy is instrumental in con-
trolling the aggregate amount and flow of virtual currency in
the system, and to encourage desirable behaviors, while dis-
couraging undesirable ones. The lack of proper policies can
render the system useless. For example, if users can obtain
large amounts of virtual currency easily, then they will bid ar-
bitrarily high values at all times. Such a system reduces to
resource allocation based on social conventions since there is
no disincentive for a user to not always bid the maximum pos-
sible value.

Mirage is a closed economic system and users have no way
to earn currency. Thus, the system must decide how to dis-
tribute virtual currency. Because users enter the system with
no virtual currency, we must bootstrap users into the system
by providing them with some amount of initial currency. In
addition, as users spend currency over time, we also need a
way to infuse their accounts with new currency. Clearly, there
are many currency polices to meet these requirements and dif-
ferent policies will result in different economic systems and
resource allocations.

Our virtual currency policy is based on two principles: (i)
prioritizing users based on type of usage and (ii) penaliz-
ing/rewarding users based on usage during times of peak de-
mand. Prioritizing based on type of usage (e.g., research vs.
coursework) is a reasonable strategy lacking other metrics to
differentiate users. In addition, it seems natural to reward the
user who refrains from using the system during times of peak
demand (or, more generally, does not waste resources) and
penalize the user who uses resources aggressively when re-
sources are most scarce.

baseline: 1000
shares: 80

Alice’s Account
baseline: 2000
shares: 20

Bob’s Account

Settlement Tax

80% 20%

Figure 3: Virtual currency policy.

In Mirage, each user is associated with a project that has an
account at the central bank. Each project’s bank account is as-
signed a baseline amount of currency based on priority, and a

number of currency shares which influence the rate that cur-
rency flows into the account. Given initial currency, users can
bid for resources in the auction. Each time the auction clears,
bids are settled and revenue is collected from the accounts for
winning bids. This currency is then distributed back to all ac-
counts through profit sharing in a proportional-share fashion
based on the number of shares in each account (Figure 3). It
is this profit sharing policy that allows users who do not waste
resources to save additional currency which can be used for a
subsequent burst of activity.

In addition to profit sharing, the system also imposes a
fixed rate savings tax on all accounts that have excess cur-
rency above their baseline values, again with proportional-
share distribution. The motivation for the savings tax is based
on expected resource consumption. For example, in other dis-
tributed systems testbeds such as PlanetLab [12], it has been
observed [1] that resource consumption is often highly imbal-
anced with a small fraction of users consuming the majority
of the resources and many users often going idle for long peri-
ods of time. Given similar resource patterns here and in the
absence of additional policy, the implication would be that
heavy users would eventually be working out of accounts with
very little currency even if there is low demand for testbed re-
sources. To mitigate this effect, we thus impose a fixed rate
savings tax (the “use it or lose it” policy). The basic idea here
is that users should be rewarded for not wasting resources but
that such a reward should not last forever. In the absence of
any activity in the system, the savings tax works such that all
accounts eventually converge back to their baseline values.

4 Implementation

We have implemented a prototype of Mirage and have been
operating it for approximately four months on Intel Research
Berkeley’s 148-mote SensorNet testbed. The implementation
is comprised of three types of components: clients, a server,
and a front-end machine that provides controlled physical ac-
cess to the testbed (Figure 4). Clients provide users with se-
cure, authenticated command-line (the mirage program) and
web-based access to a server (miraged) which implements
a logical combinatorial auction, bank, and resource discovery
service. The server accepts secure, authenticated XML-RPC
requests using the SSL protocol with persistent state stored
in a PostgreSQL database. Lastly, the front-end physically
enforces resource allocations from the auction using Linux’s
per-uid iptables packet filtering capabilities. By default,
all users are denied access to all motes. Based on the outcome
of the auction, rules are added as needed to open access to
users of winning bids for specific periods of time.

Several variables parameterize the auction: the number of
resource slots, resource slot size, and acceptable bid durations.
Our initial parameterization is based on expectations of user
desires but will likely evolve. Access to the testbed is based
on 1-hour slots. To accommodate users who require a range of

mirage ssh ssh

miraged

sshd

SensorNet Testbed

Front−end

XML−RPC
 over SSL

XML−RPC
 over SSL

Web Server

Web Browser

Alice Bob

motes 1,2 motes 3,4,5

HTTPS

Figure 4: Mirage implementation.

different time slots, users may bid for 1, 2, 4, 8, 16, or 32 hour
duration blocks. To allow users to plan ahead, the auction sells
resources up to three days in advance. Given our 1-hour slot
size, this works out to a total of 72 slots. Thus, we can view the
resources being allocated as a matrix of 148 motes by 72 slots.
When the system boots, all slots are available. Over time, slots
become occupied as bids are allocated and new slots become
available as the window of slots opens up over time.

To use the system, users register for an account at a se-
cure web site by providing identifying information, contact
information, a project name, and by uploading an SSH pub-
lic key. Each user is associated with a project and each project
has an owner. An administrative user is responsible for en-
abling accounts for project owners and assigning each project
a baseline virtual currency value and a number of virtual cur-
rency shares. Project owners can subsequently enable their
own users, thereby eliminating the administrative user as a
centralized bottleneck. In our deployment, most projects have
baseline and shares values set to 1000. Two projects (bbq and
dcs), involving local users at the lab, have larger allocations
with baseline and shares values set to 2000.

Once enabled, users can securely bid in the auction using ei-
ther the command-line tool mirage or through the web inter-
face, where PHP scripts on the backend act as XML-RPC/SSL
clients to the miraged server. The command-line tool pro-
vides access to the entire RPC interface exposed by miraged.
Use of this program is useful for scripting and automation. To
accommodate users who prefer a graphical interface, the web-
based interface provides a simple, integrated interface where
users specify what resources they want and how much they are
willing to pay using an HTML form. The web server, in turn,
maps the user’s abstract resources to concrete resources using
the resource discovery service and places a bid in the auction
on the user’s behalf.

For winning bids, Mirage provides access to the associated

set of motes for the associated amount of time to project mem-
bers of the winning bid. Mirage provides physical access to
each user by: (i) creating a temporary Unix login on the front-
end machine using a global username (the base32-encoded
MD5 hash of the user’s SSH public key), (ii) enabling access
to the front-end via SSH authentication using an SSH au-
thorized keys file, and (iii) setting up firewall rules on
the front-end such that only the user can access the particular
motes assigned to the winning bid.

5 Usage and Experience

We have been operating Mirage on Intel Research Berkeley’s
148-mote SensorNet testbed for approximately four months
now. As of April 4, 2005, users from 18 different research
projects have registered to use the system and 322 bids have
been submitted resulting in a total of 312148 allocated node
hours. While our experience to date is still preliminary given
the length of time the system has been in operation, measure-
ments of system usage thus far point to three findings: (i) de-
mand for testbed resources is bursty (Figure 1), (ii) users place
significantly different value on resources, varying over four or-
ders of magnitude, and (iii) there is evidence suggesting that
some users are behaving strategically. These characteristics
point toward the applicability of an auction for resource allo-
cation in SensorNet testbeds.

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1 10

C
um

ul
at

iv
e

fr
ac

tio
n

of
 b

id
s

Bid value per node hour

Figure 5: Cumulative distribution of bid values per node
hour.

In Figure 5, we show the cumulative distribution function
(CDF) of bid values per node hour for all bids submitted to the
system. A bid’s value per node hour is computed as follows:
if a bid has value v and requires n nodes for h hours, then
that bid’s value per node hour is v/nh. From the graph, we
observe that users place significantly different value on testbed
resources, varying over four orders of magnitude from a value
of 0.000332 per node hour to a value of 3.43 per node hour,
a factor of 10060 difference. We also see that these widely

varying valuations are distributed relatively evenly across each
order of magnitude, suggesting that this range is not due to a
few anomalous bids but rather to a wide range of underlying
user valuations for testbed resources. These two observations
support the use of auctions, which are designed precisely to
elicit such widely varying valuations to compute an efficient
allocation.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

C
um

ul
at

iv
e

fr
ac

tio
n

of
 b

id
s

Bid value

Figure 6: Cumulative distribution of bid values.

Figure 6 shows the same information except without the
node hours scaling factor. It shows the distribution of bid val-
ues as entered by users when bidding through Mirage’s web
interface. Again, we see that users make significant use of
the ability to express a wide range of valuations for testbed
resources. This graph indicates that the value of desired allo-
cations, regardless of how many nodes or hours were required,
spanned three orders of magnitude.

In Table 1, we show aggregate node hours consumed by
each of the active projects using the system. The data indi-
cates that system usage varies widely across projects and is
highly imbalanced with the top 22% of projects (the top four
projects) consuming over 75% of aggregate node hours deliv-
ered. The distreg project alone accounts for 36.47% of all
node hours used in the system. In contrast, the nucleus and
ucd projects combined have consumed just 1.91% of total al-
located node hours and seven projects have remained idle the
entire time. Given the bursty demand for system resources
shown early in Figure 1, this data motivates the need for track-
ing consumption and for weighting such consumption by the
pain it imposes on other users. For example, when contention
is high, it would seem natural that distreg, given its previ-
ous consumption, would have a lower probability of acquiring
testbed resources than, say, ucd. On the other hand, if most of
distreg’s consumption occurred when the system was idle,
then its associated consumption penalty should be reduced ac-
cordingly given that the resources would have gone unused
otherwise. Again, these properties are ones that are well suited
for an auction-based resource allocation system.

Figures 7 and 8 show CDFs for the number of nodes users

Node hours Project
113827 (36.47%) distreg
62015 (19.87%) tinierdb
34913 (11.18%) snetrouting
26161 (8.38%) bbq
24831 (7.95%) dcs
14758 (4.73%) rbrouting
10940 (3.50%) xmesh
10603 (3.40%) rads
8124 (2.60%) tinyos
5464 (1.75%) ucd
512 (0.16%) nucleus
0 (0.00%) tinydb
0 (0.00%) racelab
0 (0.00%) princeton
0 (0.00%) harvard
0 (0.00%) fps
0 (0.00%) epfl
0 (0.00%) bbq routing

Table 1: Node hours consumed distributed by project.

requested and the lengths of time (in hours) they requested
those nodes for. From the nodes CDF, we see that approxi-
mately 16% of the bids requested 32 nodes or less, resources
that were likely related to development and debugging. On
the high end, we see two noticeable spikes, one at 51 nodes
and another at 97 nodes, corresponding to the 51 MICA2DOT
nodes and 97 MICA2 nodes in the testbed. The number of bids
for either all 97 MICA2 motes or all 51 MICA2DOT motes
increased considerably near the SenSys ’05 deadline in late
March / early April. Turning to the time durations CDF, we
find that approximately 40% of the bids requested allocations
of 8 hours or more. At the same time, we also see that more
than 40% of the bids required 4 hours or less. All of the above
suggests that flexible sharing in both space and time of a Sen-
sorNet testbed is necessary.

Early system measurements also suggest that some users
are behaving strategically rather than simply bidding their true
value for desired resources. This suggests that moving to an
auction that is strategyproof [5, 8, 10], where a rational user’s
optimal strategy is to always bid her true value, is likely to
result in further efficiencies. As one example, we found one
user who previously would often bid 1 for any amount of node
hours requested then modify his bidding strategy accordingly
when competition (i.e., other active/recent bids) was observed.
Since users are allowed to modify their bids and the auction
process was open (all bids were visible), such a strategy should
in theory have no effect on who wins the auction since users
with higher valuations (and who also may lowball their bids)
should eventually outbid those with lower valuations after a
sufficient amount of iteration. The problem is that users don’t
behave this way. Usability overhead matters—they bid once
and perhaps modify their bid a second time, the end result be-

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64

C
um

ul
at

iv
e

fr
ac

tio
n

of
 b

id
s

Number of nodes requested

Figure 7: Cumulative distribution of number of nodes re-
quested.

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

C
um

ul
at

iv
e

fr
ac

tio
n

of
 b

id
s

Duration requested (Hours)

Figure 8: Cumulative distribution of durations (in hours)
requested.

ing that inefficiencies can arise.
More problematic than this was the strategic behavior re-

cently observed near the SenSys ’05 conference deadline
(April 8, 2005). The first problem occurred when the same
user recently discovered a loophole in the auction’s rolling
window of resources, a problem that fundamentally does not
exist in conventional one-shot auctions and is due entirely to
the temporal nature of computational resources. Under heavy
contention, it allowed a user to bid in the auction in such a
way that low-value bids for shorter durations could win against
high-value bids for longer durations. Upon recognizing this
exploit, we deployed a new sealed-bid (i.e., current bids are
not visible) auction mechanism on March 30, 2005 and pub-
licly announced the change on the Mirage users mailing list.
Unfortunately, shortly after announcing this fix, the same user
discovered a different loophole, this time exploiting the greedy
nature of the auction algorithm in combination with the ob-
served workload (previous bids that have won are posted for

price feedback purposes). This loophole involved the user em-
ploying a strategy of splitting his bid for 97 MICA2 motes
across several bids, only one of which had a high value per
node hour. Since the high value bid is likely to win due to the
greedy nature of the auction clearing algorithm and since all
other users at the time were all requesting 97 motes, no other
bids could backfill into the remaining slots; the user’s remain-
ing bids would then fit those slots at a low price.

In summary, these problems point clearly towards the need
for an auction that is either strategyproof or, minimally, hard-
to-manipulate (e.g., gaming the system is NP-hard). Because
testbed allocation in Mirage involves resources in space/time
and combinatorial bids over a rolling window of resources,
however, this mechanism design problem is non-trivial. It
is clear, however, that patching an existing non-strategyproof
mechanism is problematic in the presence of users desperately
trying to acquire scarce resources. A key lesson learned from
recent usage is that users will try their hardest to game the
system precisely during the times when it is most important
(i.e., under heavy demand). Consequently, we believe that
moving to either a strategyproof or hard-to-manipulate auc-
tion is a fundamental requirement to maximize the efficacy of
market-based systems such as Mirage. While the system to-
day appears well-suited to the resource demands of SensorNet
testbed users (i.e., widely varying valuations, bursty demand,
the need for flexible allocations in space/time, etc.), marry-
ing the system with an improved auction that has theoretically
provable properties should result in even better performance.

As a final note, we point out that informal feedback from
users has indicated that a resource allocation system based on
a combinatorial auction need not be hard to use given the sim-
ple web interface that Mirage provides. The main problems
users have experienced (besides the recent strategic exploits
mentioned above) have mainly concerned mechanics of log-
ging into the front-end and a hardware failure that caused an
outage for several days in mid-January. Additional user feed-
back has also involved requests for new features in the system,
some of which present additional research challenges. No-
table requests include: (i) “buy-it-now” prices that allow re-
sources to be acquired without having to wait for the auction
to clear, (ii) bidding for resources that meet certain physical
constraints, and (iii) bidding for an identical set of resources
for repeatability. The last of these requests was implemented
in late February 2005, while the first two will require augment-
ing the interface to Mirage and developing new algorithms.

6 Related Work

Originally, the lab’s SensorNet testbed used the Motelab
scheduling and management system [18] for testbed resource
allocation. Motelab provides a simple scheduling mechanism
via a web-based interface and includes automated reprogram-
ming and data collection capabilities. Resource requests are
expressed by having users select time slot(s) from a master

schedule in a first-come first-serve (FCFS) fashion and a sim-
ple time-based quota scheme is used to regulate equitable use
of the testbed schedule amongst active users. As mentioned in
Section 2.1, FCFS scheduling suffers from fundamental limi-
tations that make it difficult to resolve resource contention in
an efficient manner. In addition, since users request physical
resources (as opposed to abstract resources specifying desired
constraints) in Motelab, this further reduces opportunities for
resource allocation optimizations when users are indifferent to
multiple potential allocations. In our view, Motelab’s primary
strength is its automated reprogramming and data collection
capabilities and such mechanisms are entirely complementary
to Mirage.

There are a number of existing approaches to resource allo-
cation in computing systems. Proportional-share scheduling is
an approach commonly used to provide equal access to time-
shared resources. This approach provides users easy access
to all resources since it determines allocations using a well-
defined metric. However, it does not seem appropriate for a
shared testbed, and in particular, for a system in which over-
demand for resources can be a common occurrence. For exam-
ple, as demand for resources during these periods increases,
the time-share per resource received by each user decreases,
thereby lowering the utility delivered by the system to the user.
A resource allocation system should be able to manage alloca-
tions during times of light and heavy resource contention.

Batch scheduling is a commonly used approach used to
schedule jobs in supercomputers and grid computing environ-
ments. These systems aim to schedule jobs in a way that op-
timizes system-level metrics such as total throughput or aver-
age job-turnaround time. However, these systems do not take
into account user preferences in scheduling jobs. For exam-
ple, such batch scheduling systems cannot distinguish between
jobs that users require a timely completion and jobs that do not.
In order to maximize the utility a system delivers to end-users,
the system needs to elicit users’ preferences for resources over
time and space and seek to optimize user-level metrics. [7].

A number of previous efforts have explored market-based
approaches for resource allocation in computer systems. The
earliest work that we are aware of is a futures market for CPU
time on Harvard’s PDP-1 [16]. Subsequent work has been
largely dominated by auction-based schemes and been applied
to resource allocation in a broad range of distributed systems
including clusters [2, 17], computational Grids [6, 19], parallel
computers [15], and Internet computing systems [9, 13]. As
with these systems, Mirage also relies on an auction to allocate
resources. A key distinguishing feature of Mirage, however, is
its use of a combinatorial auction where users bid on bundles
of resources as opposed to individual nodes. This ability to
bid on resource combinations in space and time allows users
to more accurately express their preferences on the distributed
resources they seek to acquire. Such an ability we believe is
highly desirable in a setting like SensorNet testbed allocation
where users are typically interested in getting access to collec-

tions of nodes simultaneously.

7 Conclusion and Future Work

Looking forward, we believe that microeconomic resource al-
location using combinatorial auctions is well suited for large,
shared SensorNet testbeds. We have explored this concept
through Mirage, a microeconomic resource allocation system
for SensorNet testbeds. The primary goal of Mirage is to al-
locate testbed resources to competing users in a maximally ef-
ficient manner in terms of aggregate utility delivered to users.
To accomplish this, Mirage uses a repeated combinatorial auc-
tion. Users submit bids which express desired resource combi-
nations in space/time along with a maximum amount the user
is willing to pay in units of virtual currency. A combinato-
rial auction then determines an efficient set of winning bids
and subsequently provides users with controlled physical ac-
cess to the relevant nodes. To address practical issues per-
taining to expected testbed usage and the fact that Mirage is
a closed economic system, Mirage employs a virtual currency
policy based on baseline virtual currency amounts, profit shar-
ing, and a savings tax. The end result of this policy is that users
can be prioritized based on type of usage and users are penal-
ized/rewarded based on usage or lack of usage during times of
peak demand. Our Mirage prototype has been deployed on a
148-mote SensorNet testbed and currently serves as the sole
means of getting access to the testbed in nearly four months of
ongoing operation. Early experience with real usage indicates
that demand for testbed resources is bursty, that users place
significantly different value on these resources (varying over
four orders of magnitude), and points to evidence of strategic
user behavior.

We acknowledge that there are still many open questions
surrounding auctions for resource allocation. While an auc-
tion may provide the highest aggregate utility, it leaves to
question whether it produces the most socially optimal allo-
cation. For SensorNet testbeds, users may also wish to ad-
here to etiquette that is not necessarily captured in to the auc-
tion process. For example, this might involve giving prefer-
ential access to groups of users based on seniority irrespec-
tive of the the perceived monetary value. Another question
concerns whether users will actually express the true value of
their bid. As discussed, we have witnessed some users em-
ploying strategies to bid minimal amounts for their allocations
and exploiting weaknesses in the auction algorithm. Further
investigation and development of either strategyproof or hard-
to-manipulate auction mechanisms is needed to minimize op-
portunities for pathologic gaming of the system. Related to
bidding, another open issue is whether Mirage’s current bid-
ding language is expressive enough to capture the full range
of resource requests that users would like to make. Assuming
extensions are needed, as initial feedback has suggested, an-
other question is whether efficient algorithms can be designed
to produce high quality allocations while simultaneously clear-

ing the auction in a timely manner. Finally, while Mirage’s
current virtual currency policy provides mechanisms that we
believe will be effective in practice, further investigation with
real workloads over a longer period of time is still needed for
proper tuning and evaluation.

To address such limitations, future work on this project re-
volves around four primary areas. First, we intend to continue
to operate Mirage and gather further experience with real users
and usage over an extended time period. Based on measure-
ment and user feedback, we intend to obtain further insights
on the issues associated with making a real economic-based
resource allocation system work in practice and to quantify
how well the system performs over time with a real workload.
Lessons learned might then be used to focus both theoretical
and systems work on the most germane areas (e.g., combi-
natorial resource allocation with inter-node constraints). Sec-
ond, we plan to develop strategyproof and/or provably hard-
to-manipulate auction mechanisms to minimize the impact of
strategic user behavior. Such mechanisms are directly aimed
at addressing the strategic behavior we have recently observed
near the SenSys ’05 conference deadline. Third, we are work-
ing with other research groups that operate SensorNet testbeds
elsewhere in the world on gathering user requirements and, in
one case, deploying Mirage on their local testbed. Fourth, we
are also investigating how to extend this work to build an open
economy of federated SensorNet testbeds where each testbed
has its own combinatorial auction for local resources, its own
virtual currency, and testbeds trade foreign currencies using ei-
ther transitive bartering [4] and/or a virtual currency exchange
to access remote resources. The primary benefits of having
such a federation include: access to resources not available
locally (e.g., different types of motes and/or sensors), access
to idle remote resources when local resources are under con-
tention, and enabling open trading of resource rights among
participants.

References
[1] B. Chun and A. Vahdat. Workload and Failure Characterization

on a Large-Scale Federated Testbed. Technical Report IRB-TR-
03-040, Intel Research Berkeley, November 2003.

[2] B. N. Chun and D. E. Culler. User-centric Performance Analysis
of Market-based Cluster Batch Schedulers. In Proceedings of
the 2nd IEEE International Symposium on Cluster Computing
and the Grid, May 2002.

[3] S. de Vries and R. V. Vohra. Combinatorial Auctions: A Survey,
2000.

[4] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP:
An Architecture for Secure Resource Peering. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles,
October 2003.

[5] A. Kothari, D. C. Parkes, and S. Suri. Approximately-
strategyproof and tractable multi-unit auctions. Decision Sup-
port Systems, 2004. Special issue dedicated to the 4th ACM
Conference on Electronic Commerce.

[6] K. Lai, B. A. Huberman, and L. Fine. Tycoon: A Distributed
Market-based Resource Allocation System. Technical Report
cs.DC/0404013, April 2004. Available at http://arxiv.
org/abs/cs.DC/0404013.

[7] C. Lee, A. Snavely, B. Leary, L. Carrington, H. Casanova,
R. Bohn, R. Carson, J. Hardy, and Y. Schwartzman. Towards
High-Order Performance Objectives for HPC System Schedul-
ing. Technical report, University of California San Diego,
March 2004.

[8] D. Lehmann, L. I. O’Callaghan, and Y. Shoham. Truth Revela-
tion in Approximately Efficient Combinatorial Auctions. Jour-
nal of the ACM, 49(5):577–602, 2002.

[9] L. Levy, L. Blumrosen, and N. Nisan. On Line Markets for Dis-
tributed Object Services: the MAJIC System. In Proceedings
of the 3rd USENIX Symposium on Internet Technologies and
Systems, March 2001.

[10] C. Ng, D. C. Parkes, and M. Seltzer. Virtual Worlds: Fast and
Strategyproof Auctions for Dynamic Resource Allocation. In
Proceedings of the 4th ACM Conference on Electronic Com-
merce, pages 238–239, 2003. Short paper.

[11] N. Nisan. Bidding and Allocation in Combinatorial Auctions.
In Proceedings of the 2nd ACM Conference on Electronic Com-
merce, October 2000.

[12] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A Blueprint
for Introducing Disruptive Technology into the Internet. In Pro-
ceedings of HotNets-I, October 2002.

[13] O. Regev and N. Nisan. The POPCORN Market – an On-
line Market for Computatioal Resources. In Proceedings of the
1st International Conference on Information and Computation
Economies, October 1998.

[14] M. H. Rothkopf, A. Pekec, and R. M. Harstad. Computation-
ally Manageable Combinational Auctions. Management Sci-
ence, 44(8), August 1998.

[15] I. Stoica, H. Abdel-Wahab, and A. Pothen. A Microeconomic
Scheduler for Parallel Computers. In Proceedings of the 1st
Workshop on Job Scheduling Strategies for Parallel Processing,
April 1995.

[16] I. E. Sutherland. A Futures Market in Computer Time. Com-
munications of the ACM, 11(6):449–451, 1968.

[17] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart,
and S. Stornetta. Spawn: A Distributed Computational Econ-
omy. IEEE Transactions on Software Engineering, 18(2):103–
177, February 1992.

[18] M. Welsh and G. Werner-Allen. MoteLab: Harvard Sensor Net-
work Testbed. http://motelab.eecs.harvard.edu.

[19] R. Wolski, J. S. Plank, T. Bryan, and J. Brevik. G-Commerce:
Market Formulations Controlling Resource Allocation on the
Computational Grid. In Proceedings of the 15th International
Parallel and Distributed Processing Symposium, March 2001.

