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Abstract: This paper presents a network mapping algorithm and
proves its correctness assuming a traffic-free network. Respecting
well-defined parameters, the algorithm produces a graph isomorphic
to
�����

, where
�

 is the network of switches and hosts and
�

 is the
set of switches connected by a switch-bridge to the set of hosts� .
We show its performance on a Myrinet system-area network with a
fat-tree-like topology. It can map 36 nodes, 13 switches and 64 links
in 248ms and 100 nodes, 40 switches, and 193 links in 981ms. From
such maps, the system computes mutually deadlock-free routes and
distributes them to all network interfaces. Switched, multi-gigabyte
per second, system area networks are the enabling building-blocks
for networks of workstations. Because of their core role, these net-
works should be dynamically reconfigurable, automatically adapt-
ing to the addition or removal of hosts, switches and links.

1 Introduction
System area networks [1] move switched, low-latency, high-speed
networks away from the backplanes and cabinets of massively par-
allel processors into the traditional territory of local area networks.
These networks commonly use source-based message routing
through anonymous switches. In this regime, their topologies may
no longer be the static, well-defined, and well-understood [2] graphs
such as hypercubes, meshes, etc., and instead may be arbitrary
graphs that change over time. Therefore, systems must periodically
discover their topologies rather than assuming onea priori. Lacking
an out-of-band mechanism for directly querying switches for their
identities, systems must use in-band messaging to disambiguate
switch identities when discovering the network topology. From the
resulting maps, systems can compute mutually deadlock-free routes
without relying upon properties of traditional multicomputer net-
works,e.g.,static topologies, that may now be transient.

The challenge is two-fold: (1) to map networks concurrently with
the execution of applications, and (2) to accomplish this without
losing the high-performance communication enabled from direct,
protected application access to the network hardware. As a step
towards this goal, we designed a mapping algorithm and proved
its correctness assuming a quiescent network. We implemented
the algorithm in a network of 100 UltraSPARC workstations with
a Myrinet [3] network. The system periodically discovers the net-
work topology and uses it to compute and to distribute a set of mu-
tually-deadlock free routes to all network interfaces.

The contributions of this paper are the description of a network
mapping algorithm that derives a network map from a set of
probes in sections 2 and 3, empirical performance results and
characterizations in a network of interest to us in sections 4 and 5,
and a discussion of open issues and future topics in this area in
sections 6 and 7.

1.1 Myrinet system area networks
The Berkeley Network of Workstations [4] (NOW) uses Myrinet
network switches and network interface cards. The network con-
sists of 8-port cross-bar switches that use source-based, oblivious
cut-through routing. Messages have a header flit, routing flits, a
data payload, an 8-bit CRC, and a tail flit. Upon the arrival of a
message, a switch uses the next routing flit to direct the message
to the specified output port. Switches use relative port addressing,
i.e., each routing flit specifies an output port using a turn that is
relative to the input port. Should a message block and wait for an
output port, the rest of the message may remain in the network,
occupying switch and link resources. Switches automatically de-
tect and break message deadlock in 50ms. The worse case switch
latency with no output port contention is 550ns and each link sup-
ports 1.28 Gb/s data rates.

Switches can be connected to other switches or to hosts in an ar-
bitrary fashion. The switches use cut-through routing and there
exists 108 bytes of per-port buffering. At one extreme with these
switches, a message can form a circuit from the source to destina-
tion. At the other, under a heavy load of small messages, the net-
work can behavemorelike a packet-switched one. As we show,
cut-through routing through switches with even modest per-port
buffering complicates the proof of our mapping algorithm.

The Myrinet switch architecture enables low-cost and high-per-
formance implementations because of its functional simplicity.
For example, from the above description of message routing, each
switch performs little interpretation for each message. The bene-
fits of the simplicity are obvious- low-cost, low-latency and
high-bandwidth- but the drawbacks are subtle. For example,
Myrinet lacks a mechanism to query a switch directly either with
in- or out-of-band messages to obtain a unique id number for it.
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1.2 Mapping the Berkeley NOW
One can envision the Berkeley NOW’s network as a collection of
hosts surrounding and attached to its system area networkcloud.
The hosts may send special in-band probe messages into this opaque
cloud: some of them detect switches or hosts while others simply
disappear. By sampling the cloud with enough probe messages, the
algorithm derives its topology. The next sections presents an algo-
rithm to do this. This algorithm is trivially correct assuming packet
routing but non-trivial for cut-through and circuit switched routing.

Informally, consider this approach for network mapping with packet
routing. Suppose a designated root host sends enough probe messag-
es to generate a tree of all possible paths from it to all hosts directly
attached to the network. Where two distinct paths to the same host
exist, multiple tree nodes will correspond to the same actual node is
the network. The challenge is to identify all such replicated nodes.
Instead of actually generating a tree of all possible paths, the root
host systematically explores the network in a breadth-first-like man-
ner, increasing the distance (i.e., the number of turns in the route) of
each probe message that it sends. When it explores frontier switches,
it may discover two hosts attached to a switch.

When two graph nodes representing switches are found to be con-
nected to the same host, we know they represent the same physical
switch because every host has a single network connection. The two
graph nodes can beorientedwith respect to each other and merged.
Normalizing their orientations is necessary because probes may
have entered the switch from different directions. When correspond-
ing switch ports are aligned and the information from one of the
graph nodes ismerged into the other, further replicates can be creat-
ed and detected. For example, merging can cause individual switch
ports to become connected to multiple nodes. This configuration is
impossible because an actual switch port has a single cable connect-
ing it to one other switch port or host. Thus, multiple links incident
to a switch port identify additional replicates. The exploration and
merging continues until the algorithm has no switches remaining to
explore and has no replicated nodes waiting to be merged.

With packet routing, all paths from the root to all hosts are covered.
Other forms of routing complicate the proof of the algorithm be-
cause probe messages might deadlock on themselves or prevent us
from fully exploring all output ports of a switch because the probe
message itself is occupying some of them. This “stepping on one’s
tail” phenomena makes mapping non-packet-switched networks a
challenging and interesting problem. The set of all probe paths gen-
erated by probing the network with packet routing is a superset of
the sets generated with circuit or cut-through routing. For example,
it might be impossible to establish circuits along some of the paths
traversed using packet switching. Still, the algorithm can derive
maps given such subsets of all possible probe paths.

2 Formal model of the system
This section presents a system model to facilitate the presentation of
the mapping algorithm and its proof of correctness. The core model
components are hosts, switches, ports, and wires. Then source-
based, cut-though routing with relatively-addressed switches, and
the types and behaviors of probe messages are defined.

2.1 System components
The ���
	�����
�  consists of two types of nodes:����
	�� , � , and�
����	������
� ,�
 (disjoint from � ). The network

�
 is a finite multi-graph on� ∪�

. We refer to the edges as�������
� . Each end of every wire is labeled
with a ����
	������! "�
� , such that no two�����
� � �
��#�� incident on the same
node share a port number. Denote uniquely a wire-end by its$%�&'#��
(����
	�)  pair, e.g.,$��+*�("�,*�) . A switch has eight allowable port-numbers:-�. (0/ / / (01�2 and a host has one port,

.
. In some contexts, we consider

the wires of
�

 to be bi-directed. We assume that
�

 is connected
and has at least one switch and two hosts. Let3  be its diameter.

2.2 Sending messages
The network uses cut-through routing through switches with rel-
ative and non-modularly computed port addressing. The�
���	����"45 #�#��
�
�
� of a message is a string5"6 / / / 587  from the alphabet

- � 1�(0/ / / (9 1�2 . Call the host sending the message�,* . Let $�� 6 (:� 6 ) be the im-
mediately adjacent switch port. Let� 6<;<= � 6 9 5"6�> where the addi-
tion is not performed modulo the switch degree (? ). Assume for
the moment that� 6<; is in

-�. (:/ / / ( 9 1�2 , i.e., it is a legal port number.
We have now computed one step of themessage path from $%�,*�( . )
to $�� 6 (�� 6'; ) , i.e.,taken an a1-turn through the switch� 6 . In general,
let $��+@ A 6'; > �,@ A 6 ) be the neighbor of$��+@ (B�,@ 9 5 @ )  in � , when such a
neighbor exists. That is, the subsequent characters of the message
determine the next turn to take out of a switchrelative to the port
taken by the path on the way in. There is no means of addressing
an absolute output port.

The sequence�,*�(+� 6 (+��C:(+/ / /+� 7 A 6 is the �!�
�
� 5 4D��� 5 	�� . When all
routing characters are exhausted, the message path terminates at
the host� 7 A 6 that receives the message. A routing address fails to
define a message path in the graph only in these four cases.

• ILLEGAL TURN: If �,@ ; ���E���	&��� -�. / / / 1�2 , we have made a turn
resulting in an illegal port.

• NO SUCH WIRE: If�+@ has no wire at port�,@�A 5 @ /
• HIT A HOST TOO SOON: If a message arrives at a host and

it still contains routing flits, i.e., �+@  is a host for some .

• STRANDED IN NETWORK: If the message path does not
end at a host,i.e., � 7 A 6 is a switch.

Only one worm may use a given edge at a time. The hardware or
firmware destroys messages that attempt illegal paths. If an output
port is occupied, a worm waits for the port for a period of time set
is switch ROMs (currently 55ms) after which the switch forces a
special “forward reset message” out the blocked output port. This
message clears the path in front of it until finding the head of the
blocking worm (the tail is destroyed by hardware).

A worm on a message path which uses the same edge in the same
direction will block at that edgeif its tail has not yet passed that
edge. The differences here can depend on several hardware fac-
tors, such as even modest amounts of buffering in switches.

2.3 Probing to discover network topology
A distinguished� 5 �����
� host runs a mapper daemon. This pro-
gram probes the network and from the responses builds amodel
treeF  of theactual network

�
. We distinguish between the two

graphs and their components using the terms,model andactual.
There are two types of probes, a�
����	���� � ���
� "�  and a����
	 � ���
� "�
G
• SWITCH-PROBE: To test if a switch port is connected to an-

other switch, the mapper sends a message with routing flits
encoding turns5"6 / / / 587 . � 587 / / / � 5"6 . If the mapper receives this
“loopback message,” it knows an output port of a switchk-
hops away is connected to another switch.

• HOST-PROBE: To test if a switch port is connected to a host,
the mapper sends a message with routing flits encoding the
turns 5"6 / / / 587 . If the mapper receives a reply from this host to
this message, it knows that this host is connected to an output
port of a switchk-hops away. Hosts are uniquely identified.

Let a���
� "�  be a pair of the two above tests, using the above strings
based on the same5"6 / / / 587 $ H�I Depending on the results, we
say the probe response is “�
����	���� ”, a unique host-name, or the

� �≤

5 J 0≠
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symbol “���	������"4 .” If the probe finds a host the mapper obtains an
unambiguous name for it, but if it finds a switch, the identity of the
switch remains ambiguous.

Probing computes a mapping from probe strings to responses, which
we denoteR: {-7, ..., -1, +1, ..., +7}*→ H ∪ {“ �
����	���� ”, “ ���	�� ����"4 ”} . Any non-null response to a probe is due to the fact that the
probe path terminated in an actual node (switch or host)K . We say
that the model vertexK correspondsto this actual nodeK . This is a
well-defined correspondence function, from model vertices to actual
nodes.

2.3.1 Two models of probe failures

Note that even when the probe path exists in the network there may
be no response, due to possible worm collisions or other errors,e.g.,
message corruption. Worm collisions are the major complication in
the proof of correctness (Recall the assumption that the network is
quiescent during mapping and thus worms can only deadlock on
themselves.) Depending upon hardware considerations, the follow-
ing two models may apply: (1) messages are circuit routed and
therefore host-probes reusing edges in the same direction fail and
switch-probes reusing an edge in either direction fail because they
must return, or (2) messages are cut-through routed and therefore
probes reusing an edge may or may not fail. Other errors such as
message corruption are not addressed in the model.

3 The Mapping Algorithm
This section presents a simplified version of the mapping algorithm.
In Section 3.2 we prove it correct. In Section 3.3 we apply a series
of modifications and demonstrate the correctness after each change.

The mapper host sends probes of increasing length into the actual
network, exploring it in a BFS-like manner. The inability to identify
switches means the exploration is not actually a BFS because probes
revisit nodes from different directions. For each non-null response
to a probe5"6 / / / 587 , the algorithm builds a new model vertex v in the
model graphF . The resulting treeF  is a subtree of the natural tree
on the probe string space.

Because the model graph in general contains replicates of actual net-
work nodes, the algorithm must detect them in order to produce an
accurate copy of the network. For example, two model vertices are
recognized as replicates if they purport to be connected to the same
host. This is because each host is connected to a single switch by a
single link (by system construction). In essence, this describes the
first step of Lemma 3 below.

Merging information from the two vertex objects may result in some
switch ports claiming to be connected to multiple other switches or
hosts. This identifies more replicates, and Section 3.2 and especially
Section 3.2.6 show that this deductive process ultimately identifies
all replicates. Identity information from separate regions of the mod-
el graph propagates and enables the identification of more replicates.

As a proof technique, after deducing that two vertices are replicates
our simplified algorithm labels them the same, as opposed to merg-
ing the objects themselves. Subsequent modifications in Section 3.3
changelabeling into merging while preserving correctness.

3.1 Algorithm pseudo-code
After presenting the pseudo code, subsequent subsections cover de-
tails of the core data structures, operations upon them, and algorith-
mic parameters.

INITIALIZATION

The model graphF  is initialized with two vertices: the root host-
vertex,�,* , corresponding to the actual mapper host,�,* , and its adja-

cent switch-vertex. Initially, the frontier queue contains exactly
this switch-vertex.

EXPLORE

while( and
( ) )

for �  in L�M�N�O�I I I O�M�P�O�P�O�I I I O�N�Q
if ( )

(newProbeString, whatKind,K )
add new vertex to frontier

endif
endfor

endwhile

MERGE

repeat

For all pairs of verticesK 6 (�K'C  such thatK 6 I RTS�UWVXR�YZK'CBI RTS�UWVXR
For each port number�  in L%M�N�O�I I I O�N�Q

if ( K 6 I neighbors[� ].label K'C .neighbors[� ].label)
mergeLabels(K 6 .neighbors[� ], K'C .neighbors[� ], i)

endif
endfor

endfor
until( )

PRUNE

repeat

For each vertexK
if K .delete

endif
endfor

until( )

3.1.1 Data structures

The pseudo-code object representing a vertexK in F has the fol-
lowing fields. Vertices have labels to indicate if they have been
determined to be replicates. They also record adjacent neighbors.

• probeString- records the successful probe string5"6 / / / 5[7 that
lead to the creation ofK .

• kind- records the type of node, “�
����	����D\ or “ ����
	 ”. The re-
sponse "���	������"4 " never creates a vertex inF .

• label- when a host-vertex is created, its label is set to the
host-name, which is the probe string response,]^$ 5"6 / / / 587 ) .
When a switch-vertex is created, it gets a fresh label.

• neighbors- an array of edge objects. We sayK 6 / ���
� 4D�� "��
�
_���`
connectsto K'C  if the edge object atK�/ ���
� 4D�� "��
�
_���`  hasK 6  andK'C  as its endpoints. Initially an edge’s index in this array is the
turn that discovered it, which we call the relative port number.

edgeis an object containing a reference to the vertex at each end
of it, and the associated indices (relative port numbers) pointing
back to it in these two adjacent vertices. The constructor���
��
#�4D�bac��#�d��
�
	��
e�$����
��fg�
� "� � 	��
���"4D(,������#�(,K�) creates an edge object�  connected toK  in the obvious way and to a new vertex object

K frontier.nextElement←( ) � � h h≠K .probeString.length SearchDepth≤

newProbeString v.probeString �+←
whatKind R(newProbeString)←

whatKind nothing≠K .neighbors[i] new edgeAndVertex←

boolean anyDeductions? false←

≠

anyDeductions? true←

anyDeductions? true=

boolean anyDeleted? false←

K .kind switch=( ) degree(v) 1=( )∧( )

anyDeleted? true←

anyDeleted? false=
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created with fields���
� i� � 	��
���X4 = ���
��fg�
� i� � 	��
���"4D(�������# = “ �
����	���� ”
or “ ����
	 ” (given by ��� 5 	�j^����# ), � 5 �
�
��	 = K and h 5  i�
h = ������#k$ if ������#
is a host-name) or a fresh label (if������# =ml �
����	���� ").
At all times, two vertices with the same label correspond to the same
actual node in

�
, and the�!�
�b4D�
n 5  "�
h��  routine maintains this proper-

ty. It is discussed in detail in Section 3.1.2.

frontier is a FIFO queue is used in the standard manner of a BFS
search to hold created but unexplored vertices.

SearchDepth limits probe string lengths (see Section 3.1.4. for a spe-
cific value).

3.1.2 The mergeLabels operation

We describe the�!�
�b4D�
n 5  "�
h��  procedure without giving pseudo-
code. This procedure merges the labels of two vertices, and re-in-
dexes their neighbors arrays. We show below in Lemma 2 that this
procedure will give only replicate vertices the same label, and
changes the indices to have equal indexing offsets (defined below).

�!�
�b4D�
n 5  "�
h��  takes as input two verticesK 6  andK'C  that are labeled the
same, and an index� . Initially, K 6  andK'C , through relative port� , con-
nect to� 6  on porto and �:C  on port� , respectively. For every�  in F
with the same label as�:C , �!�
�b4D�
n 5  "�
h��  changes� ’s label to that of� 6 . The indexing of� ’s neighbors array is shifted byo � � . Finally,�!�
�b4D�
n 5  "�
h��  fixes the relative port numbers in all of the affected
edge objects.

3.1.3 Indexing offset of the neighbors array

When two replicate vertices are encountered during merging (be-
low), we would like to match up their neighbors. This is non-trivial
because the indexing of the neighbors array ofK  is an artifact of the
relative turns of the probe path toK . Suppose that inFp(iK  is connect-
ed to some vertex�  through porto . In the actual graph

�
, K  is con-

nected to�  through some absolute port number� . In Lemma 2 we
will see that� � o  is invariant under choice of neighbor� even after
some merging. Indexing offsets are simply a tool for the proof. Thus

Definition 1: Theindexing offsetof K  is � � o .
3.1.4 Bounding the exploration depth

The algorithm has a bounded search depth. We useq 9 3 9gr , whereq  is defined below and3  is the network diameter. A i�
��#�4D�  in a
graph is an edge the removal of which increases the number of con-
nected components. A�
����	���� �  i�
��#�4D�  is a bridge with switches at
both ends.

Definition 2: For a nodev in
�

 let q!$ K�)  be the length of the shortest
path from�,*  (the mapper) toK  and then on to any host that does not
repeat an edge in either direction, except that the first and last may
be the same. (The path may cross a bridge, but not a switch-bridge.)

Note thatq!$ K�) may not exist for someK . Let
� =  { K  such thatq!$�K�)

is not defined}. Call
�s�D�

 the ����
�  of the graph.

Definition 3: Let q = /
The next lemma shows thatK  in �  are not too useful for routing.

Lemma 1:
�

 = the set of all nodes that are separated by a switch-
bridge from�!/
Proof. This is a consequence of the Max-Flow, Min-Cut theorem,
theorems 27.7 and 27.11 in [6]. LetK  be a source of flowt , and at-
tach a sink to all hosts (we assumed there are at least two). Give all
edges capacityr .■
Notice that if a switch in

�
 is used on a routing path, that path has a

loop at the switch-bridge, and the loop can be pruned. Such paths
with loops have questionable utility. (One can think of this switch-

� 5 e q K( ) K � �
–∈〈 | 〉

bridge as a bridge separating a collection of switches not connect
to any hosts on one side with a reasonable network on the other
side.)

3.2 Proof of correctness
The following is a sketch of the proof. First we show that each
node in

�u�0�
 is represented at least once inF . It suffices to show

that all replicates are merged, guaranteeing that each node is rep-
resented at most once. Replicates will be merged if they have
“parallel” paths (corresponding to the same actual path in

�
) to

replicate host-vertices. Withpacket routing, these parallel paths
always exist and we will see that this finishes the proof.

With circuit routing however, the parallel paths arenot guaran-
teed to exist, and this is the major complication of the proof. Spe-
cifically consider a path�  from K  in F  to a host-vertexh. Let K�v
be a replicate ofK . If we can start atK�v  and go along the path “par-
allel” to � , sort of “pasting”�  on to K�v , we should arrive at��v  (a
replicate of� ). We cannot assume that this succeeds because the
implied probe path may “step on its tail.”

The existence of this collision however guarantees the existence
of other side-paths to�  in F . because we have found more copies
of � , we have more information to work with. It will take an in-
ductive examination of these side-paths to see that these replicates
are discovered.

The case ofcut-through routing is similar. Some probes may suc-
ceed where previously they failed due to self-deadlock. This gives
us a possibly largerF  than above. Assuming additionally that

�
is empty, we ensure that these extra replicates are found.

3.2.1 Conventions and definitions

We formalize notions of “correspondence”, “parallel” and “repli-
cate”. We will continue to use the adjective "actual" to refer to

�
and its components, which we call nodes and wires. We use the
adjective "model" to refer toF  and its components, which we call
vertices and edges. A letter such asK  or �  or �  will denote a vertex
or edge or path inF . Primed versions (e.g.,K�v ) of the same letter
will always denote replicate or parallel vertices or edges or paths
respectively. (See below.) Overline versions (e.g.K ) of the same
letter will always indicate corresponding actual elements in

�
.

Definition 4: Define thecorrespondence mapw^G dWx →dzy  byw^$�K�) = K{� |�| K{���}dzy  is the actual network node that causedK  indzx  to be created. Similarly, definew^G ~0x → ~0y  by w^$��
) = � if �
was created in response to a probe that crossed�
/
Definition 5: If w^$�K�) = w^$�K�v�) for K�(�K�v,���{dzx , we sayK  andK�v are
replicates.

Definition 6: If w^$��
) = w^$��
v�) for �
(0�
v+�T��~0x , we say�  and �
v  are� 5 � 5 h�h��
h . Two paths� 6 / / /�� 7  and � 6 v�/ / /�� 7 v  in F  are � 5 � 5 h�h��
h  iff ��@ is
parallel to��@ v  for each� .
Clearly if two paths inF  are parallel, the points along the paths
are respectively replicates and the path lengths are the same.

3.2.2 Main theorem
We begin with a short argument for the case of packet routing. Re-
call thatF  is the model graph constructed by the algorithm. Be-
cause we merge labels instead of merging nodes,F  is actually a
tree. Letn  be the label equivalence relation on vertices (given byK 6 / h 5  i�
h = K'C:/ h 5  i�
h ). Let F���n�$ F��!�#cn�)  be the graph that one
obtains by identifying the nodes ofF  that have the same label.

Let us begin by demonstrating that the algorithm, slightly modi-
fied, is correct for packet routing. That is,F���n  is isomorphic to
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�
. In packet routing messages can reuse edges arbitrarily. Assume

search deptht�3 9�r , That permits probe paths long enough to reach
any switch and then continue on to a host. Consider all replicates
corresponding toK  in � . Each has a path to a host or edge. The short-
est such path has a parallel copy at each replicate. To finish, using
Lemma 3 below, note that the labeler detects these paths.

Theorem 1: In the first collision model (circuit routing)F��Dn  is iso-
morphic to

�s�+�
. In the second collision model (cut-through) when�

 is empty,F���n  is isomorphic to
�

.

The following argument proves the first sentence in detail. At the
end we extend the argument to the second sentence.

The breadth-first exploration stage goes to a . There
is at least one simple path from the mapper host to any node of depth
at most3 . Thus each node and wire in

�
 is represented at least once

in F .

All that remains to be shown is that when the labeler and pruner have
stopped, two nodes are labeled the same� |�| they correspond to the
same actual vertex. This takes until the end of Section 3.2.

3.2.3 The labeler is correct
We show that the Merge section (including the�!�
�b4D�
n 5  i�
h��  subrou-
tine) always makes correct labeling deductions and re-indexings.
This lemma shows only that the algorithm “merges” replicates but
not that it “merges”all replicates.

Lemma 2. If � 6 / h 5  i�
h = ��C:/ h 5  "�
h then w^$%� 6 ) = w^$��:C:)  and � 6  and �:C
have the same indexing offset.

Proof by induction on the number of calls to�!�
�b4D�
n 5  "�
h�� .
For the basis case, the mapper gives all vertices different labels ini-
tially, unless they are hosts. Hosts have unique id’s, and host-verti-
ces will be labeled the same iff they correspond to the same host. A
host has only one port, so all replicates of a host-vertex inF  have
its one switch-vertex neighbor attached at���
� 4D�� "��
�
_ . ` . There is no
index re-normalization issue.

Consider the deduction that the mapper makes to conclude that two
switch-vertices� 6  and �:C get the same label. By the induction hy-
pothesis, the two verticesK 6  and K'C  with the same label before the
deduction correspond to the same vertex and have the same indexing
offset.�g�
Vc�&VX�
���T��VX��K 6  and K'C  are labeled the same. Initially,K 6  and K'C ,

through relative port� , connect to� 6 on porto and �:C  on port� , re-
spectively. Because any port has at most one wire,K 6 / ���
� 4D�� "��
�
_���`
andK'C:/ ���
� 4D�� i��
�
_���` must be connected to vertices that are replicates.
Shifting the indices of�:C  so that �:C:/ ���
� 4D�� i��
�
_ o[`  (rather than�:C:/ ���
� 4D�� "'���
_%��` ) now connects toK'CB� Thiscauses� 6  and �:C  to have
the same indexing offset. Recall that all nodes with the label�:C:/ h 5  "�
h
and all relevant edge object vertex references are re-indexed for con-
sistency.■

3.2.4 Using parallel paths
We show that vertices that have parallel paths to the same host even-
tually are labeled the same. Recall that vertices on parallel paths are
replicates. This lemma shows that the labeler can deduce this. Be-
low, by a round of the labeler, we mean one completion of the outer
repeat loop.

Lemma 3. Suppose there are parallel paths�  and��v  of length�  from
verticesK,* andK,*�v  to verticesK 7 andK 7 v . If K 7 and K 7 v  have the same
label at round	  of the labeling algorithm thenK,*  and K,*�v  have the
same label at round	 9 � .
In particular, notice that ifw^$�K 7 )  is a host, we may let	 = . /

depth 3 1+≥

Proof by induction on� . The base case for� = . is trivial.

Let e,*  be the indexing offset forK,* , and lete 6 be the indexing off-
set for K 6 . Now consider the first edge in the path� . It takes the
(vertex, port)$�K,*�([o
*�) to some$%K 6 ([o 6 ) . By construction of the paths
above,K 6  corresponds to the actual nodeK 6 in

�
 and the edge$�$�K�(o
*�)�(�$�K 6 (Do 6 )%)  corresponds to the actual wire$�$ K,*�(+o�* 9 e,*�) , $ K 6 (o 6 9 e,*�)�)  in � . Similarly for K,*�v and the first edge of��v .

Now, K 6 and K 6 v  both have parallel paths of length� � r to K 7  andK 7 v respectively. (Just remove the first edges of�  and��v ).  By the
induction hypothesis,K 6 / h 5  i�
h = K 6 v�/ h 5  i�
h  at the end of round	 9 �� r  of the procedure. The next round will notice thatK 6 and K 6 v
both connect through porto 6 to the two nodesK,*  and K,*�v respec-
tively and will label them the same.■

3.2.5 Copying and pasting parallel paths
We now begin to show all replicates get labeled the same. We do
this by extending our diagram ofFp(  which represents the parts ofF  that we know must exist.

Consider someK  in �p�D� /  Since we explored to depth at leastq ,
for at least one of the replicates,K , there is a switch-bridge-simple
path throughK  to a host,��G���� . (�K�(���� .

Consider any other replicate,K�v , within distance3 9�r | rom �,* .
(We examine those further away at the end of the proof.) Consider
the probe path toK that resulted inK�v being created. One way that
the mapper can (attempt) to extend this probe path is to (attempt)
to probe further down the actual path� K�( ��� .

If such an extension succeeds, in our diagram ofF , there are ad-
ditional edges, which we now know exist. We call this “copying”
the path fromK  to � 5 nd “pasting” it atK�v . It must be emphasized
that we are not extendingFp(  which is built by the algorithm - we
are extending our diagram ofF , which represents the parts ofF
which we know must exist.

If the paste succeeds, there are parallel paths fromK  to �  and fromK�v  to some new��v�(  and by Lemma 3 the labeler will eventually la-
bel K  and K�v the same. This paste may not succeed, however, and
a more complicated construction is necessary.

3.2.6 An inductive construction
The fact thatK andK�v  are replicates gives us structural information
about

�
 and thusF . Using multiple pastes we now construct ad-

ditional sections of our diagram ofF . This will allow us to show
the existence of replicate vertices/edges on the paths from the
mapper toK  andK�v  respectively.

Consider the actual path in
�

 corresponding to path���,*�(iK�v�� . Call
this the 4D�
�
�
��� 5 	�� . Similarly, call the actual path in

�
 corre-

sponding to path�g�,*�(XK�� the �����
��h��g� 5 	�� and the actual path in
�

corresponding to path�gK�(���� the �
�
#�� 5 	�� . Any model edge inF
which is parallel to a colored actual edge has the same color. Edg-
es may have more than one color. Recall that the length of (purple
∪ red) = q!$ K�) q .

We say we traverse the purple and red paths upward from�,*  to K
to � , and upward along the green path from�,*  to K�v .
Since probe paths only block when they attempt to reuse an edge,
by the intersection of two paths, we will mean edge intersection.

Definition 7: Let apurple-green chunk be a maximal sequence of
purple and green edges that are contiguous on both the purple and
green paths. Define ared-green chunk similarly.

Note that purple-green chunks may abut at a node on, say, the pur-
ple path, while remaining distinct chunks. Notice that red and pur-

≤
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ple never intersect, unless� = �,* . (In this case the first edge of purple
equals the last edge of red. See the anomaly in the definition ofq .)

In F  now, let4g*  be the first purple-green chunk found going upward
on purple from�,* . It starts right at�,* , since the first purple edge and
green edge are parallel.

Let 4 be the next purple-green chunk found going upward on���,*�(K��  (purple) from4g* . Let 4Dv be the parallel copy of4  on the green
path. Let# be the highest red-green chunk on the red path. (The first
one found coming down from� . In the case that� = �,* , we do not
count as an intersection the last edge of red = first edge of purple,
since this is not a collision according to our routing model.) Let#�v
be the parallel copy of#  on the green path.

(1) Copy the red path section�g#�("��� and paste it on at#�v (creating��v
thereby).

(2) Copy the green path section�B4Dv�(:#�v��  and paste it on at4 6  (creat-
ing # l  thereby). Copy the red path section��#�v�(X��v�� and paste it on at# l (creating� l  thereby). Finally, copy�,4Dv�(�K�v�� and paste it on at4 ,
(creatingKD\  thereby). This may fit partially on top of the previous
green pasting.

Notice that going up the purple path on4  may correspond to going
up or down the green path on4Dv . These pastings are made to fit in the
obvious way. Thus, traversing the newly constructed�g�,*�(�4D(i# l (i� l �
may or may not cross a parallel copy of4  or # .
(3) Examination of the current diagram now reveals that4 and 4Dv
both have parallel paths to replicates of a host-vertex,� l  and ��v  re-
spectively. Similarly,KD\  andK�v  also have parallel paths to�D\ and ��v .
We must show that all of the pasting constructions mentioned above
actually exist inF .

For each construction, when the green section and red sections are
pasted on, we need to know that the relevant sections of purple and
green are edge-disjoint, and the relevant sections of red and green
are edge-disjoint. This follows directly from the definitions of4  and# .

Figure 1 First step of the inductive construction.
The figure shows:

(1) the copying of� # ( � �  and its pasting at d� that creates� # ; ( � ; �
(2) the copying of� 4 ; ( # ; ( � ; �  and its pasting at4 and the copying� 4 v ( K v �  and pasting this also at4

� *
4 *

# ;
4 ;

K v� ;

4

K � ; ;

# ; ;� � � � � �� � � � �� � �

K v v

�

#
$ r )

$ t )

The length of the path from�,*  to K  to �  is q!$ K�) q . Thus, as
noted in the section above, the red and purple together have length
at mostq . The green has length at most3 9gr . Our exploration
depth is at least the sum of these two.

By Lemma 3 the labeler will label4  and4Dv  the same, andKD\  andK�v�(  the same.

Let the new green path (inF ) be ���,*�(X4g*�(X4D(�KD\�� . (It is just the
green path with purple�,4g*�("4D�  replacing green�,4g*�("4Dv�� .) If we
replace the green path with the new green path (see Figure 2), we
can repeat the above construction. At each stage the intersection
of purple and green is growing. The induction terminates when
they are equal. AllKD\ s constructed are labeled the same asK�v . The
last KD\ is K . Thus, eventually,K  andK�v  are labeled the same.

3.2.7 Implications of the construction
If at this point we mod out by the labeling relation$ F ��n&) , the re-
sulting graph will contain an isomorphic copy of the core.

Now we will consider the case whereK�v is further than3 9gr from
the mapper. We have not yet proved thatK�v  has been labeled cor-
rectly. However, sinceK�v has not been pruned in the model treeF
some descendent� 6  of K�v  is a host. Thus, the path�gK�v�(+� 6 �  be-
tween these is parallel to a path in the core$ �¡�z� ) . The labeler
will find this and eventually labelK and K�v the same.

Now consider the second sentence of the theorem. Paths (some-
times) succeeding where they previously failed produces anF
that is a “super-tree” of the one considered above. We must only
ensure that if extra replicates,K�v , are produced, they are also
merged back into the core. The demonstration of this is similar to
the above paragraph. It should be noted that this demonstration
uses the emptiness of

�
. (Above

�
 was eliminated by the pruning

stage. Now we must assume it is empty, since it is not guaranteed
to be eliminated.)■

We may reduceq 9 3 9�r to q 9 3  by noticing that the red and
green paths must overlap on the first edge. We do not know if a
better construction would give us a better upper bound on the nec-
essary exploration depth of this algorithm.

≤

Figure 2 The new green path. The induction step proceeds by
using this new green path in place of the old.
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3.3 Towards the actual algorithm

Now we modify the algorithm to converge to the actual one, noticing
that with each modification it remains correct.

1. Move the entire labeling section of code into the while loop of the
exploration section, at the bottom of the loop.

Notice that the condition needed to be able to apply the inner rela-
beling deduction rule is a local condition: that the two vertices have
the same label. Once this local condition holds for two vertices,
more steps of the exploration or labeling process never invalidate it.
Thus extra labeling deductions are always valid.

2. We say the labeling process hasstabilized when no more labeling
deductions can be made from the current information. Once the la-
beling process has stabilized, and a round produces no more label
merging, the addition of a new vertex with a fresh label produces no
additional label-merging at all. Thus, after the addition of a new
switch, we can omit the labeling process, as new switches have fresh
labels.

Further, in the labeling process, we need not consider pairs of verti-
ces as candidates for label-merging when neither have changed their
labels since the last time the labeling process stabilized. Thus we
now only consider pairs where at least one element is a newly added
host-vertex or a switch-vertex that had its label changed since the
last stabilization of the labeling process.

We now stop using the concept of labels. Now, instead of merging
their labels, we merge two vertices into one vertex object. The
merge takes the union of the neighbors array information. SoK�/ ���
� 4D�� i��
�
_���`  may no longer be a single edge, but a list of edges
connecting to many vertices. All of these should be merged into one
vertex. This is what remains of the what was previously the labeling
deduction.

We may thus make a more efficient merging process using a merge-
list of vertices. When the labeling process has stabilized, the merge-
list is empty. When a new host-vertex is created, it is put on
mergelist, and the algorithm does the following:

while ((K  = ¢£VX�
¤�VXRb�T�<�¥/¦�+VX§,�%¨gRTVX¢£VX�+�%) null)
try all deductions usingK
put those who get merged onto mergelist
RemoveK from mergelist

3. We reduce the total message count with some local optimization
tricks. These are carefully done to eliminate probes only when we
are sure they will fail.

For our system the complexity ist,©�ªb«�¬0�® . However, if the diameter
is ¯!$�h��4 � ) where

�
 is the number of nodes in the model graph and

if q = ¯!$�3!) , it runs in polynomial time or less. Picking the order of
port exploration is important. Suppose we’re exploring a switch and
we enter at a port effectively chosen uniformly at random. Consider
which relative turns have the greatest probability of finding some-
thing: excluding turn

.
, turns of9 � � r are the best, turns of9 � � t are

the next best, etc. Turns9 � � 1  only work small amount of the time.
Also note that probes that fail to generate a response tell us nothing
about the range of turns that we should be focusing on, but probes
that generate responses do. Once we find two turns separated by a
distance of1 that are successful, we are done. Furthermore, if we as-
sume densely-populated switches, as we explore turns

� r ( � t�(X/ / / (  and
fail to get a response, we should start probing outwards in the other
direction (or visa versa).

4 Myricom’s Mapper
The Myricom network mapping software implements a different
mapping algorithm. It differs from our algorithm in several ways. To

≠

avoid confusion, Myricom’s mapping algorithm is called the
Myricom Algorithm and our algorithm is called the Berkeley Al-
gorithm. A description of the Myricom Algorithm, makes its sim-
ilarities and differences from the Berkeley Algorithm clear.

4.1 The Myricom Algorithm
The Myricom Algorithm performs a breadth-first exploration of
the network. It has the equivalent of a frontier queue of switches
pending exploration. While switches remain on their frontier
queue, it pops off each one and explores it. To explore the switch,
the algorithm sends probe messages to check for the presence of
loopback cables and to check for links to hosts and switches.

The Myricom Algorithm uses relative switch port addressing and
a generalization of loopback probe messages to test if the current
switch (the one just popped off the frontier queue) has been ex-
plored. Recall that mappers send loopback probes with turns of
the form ° 6 / / / °�±�² � °�±^/ / / � ° 6  to test for switch-to-switch connec-
tivity. Now consider two turn sequences:° 6 / / / °�± to some input
port on the switcha  being explored and

� 6 / / / � ± to an explored
switch ³ . To test ifa is ³ , the Myricom Algorithm sends probes
of the form° 6 / / / °�±g´ � �+µ / / / � � 6  wheré  spans any single turn.

For 8-port switches, the turns used in thesecomparison probes are- � 1�(X/ / / ( � r ( 9�r (X/ / / ( 9 1�2 . Therefore, switcha  is switch³  if there ex-
ists a route toa , concatenated with a turn¶ , concatenated with
the return route from switch³ . The Myricom Algorithm employs
a variety of heuristics to reduce the total number of probes sent.
When two switches are recognized to be replicates, they are
merged in the same manner as in the Berkeley Algorithm, except
that merging two switches never produces new ones to merge.

4.2 Comparison and analysis
The Myricom Algorithm aggressively looks for replicates as it ex-
plores that network, whereas the Berkeley Algorithm discovers
replicates in a lazy fashion. The former sends a sequence of com-
parison probes to test if a potentially new switch from the frontier
queue has already been explored. The latter builds a model graph,
and checks for structural inconsistencies, from which it deduces
that switches are replicates. This deductive replicate recognition
process propagates “backwards” from the leaves towards the
mapper host. The Myricom Algorithm proceeds “forwards” from
the mapper host, actively finding replicates on the fly. The algo-
rithms trade-off sending messages and memory usage.

There are two secondary issues. First, the Myricom Algorithm is
implemented in the network interface firmware whereas the Ber-
keley Algorithm is implemented at user-level. The Berkeley Al-
gorithm is written using essentially the same active message
primitives available to standard client/server and parallel pro-
grams. Although more tightly connected to the network, the Myri-
com Algorithm runs on a 37.5-Mhz embedded message
processor. The Berkeley Algorithm runs on a 167-Mhz UltraS-
PARC workstation but it interacts with the network interface via
the SBUS. Myricom’s mapper is implemented as a background
task in the interface firmware and runs at a lower priority than the
normal routing and message handling software. The mapping and
routing functions and the normal message handling software all
exist in the limited 128KB or 256KB memory of the interface.
The Myricom Algorithm views the network bandwidth and laten-
cy as the only unconstrained resource in the system and aggres-
sively uses messages to solve the map discovery problem.

Secondly, both algorithms have two operational modes, one
where a master maps the network while all others interfaces re-
spond to incoming probe messages, and another where all inter-
faces or hosts actively map the network and in the process the
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participants elect a leader by comparing network interface addresses
carried in every message. The master/slave mode is faster but intro-
duces a single point of failure, whereas the election mode is more ro-
bust, e.g., to network partitions and re-connections, but has a
performance cost.

The message complexity of the Myricom Algorithm isO(N2), where
N is the number of nodes in the network. The constant factor is large,
because for each switch the algorithm sends up to 14 messages to
test for self-loops, up to 14 messages to test if switch ports are con-
nected to other ports, 14 additional messages to test if switch ports
are connected to hosts, and someO(N2) number of additional mes-
sages to comparing switches to previously mapped switches.

5 Empirical study and discussion
The intent of this section is to provide more insights into the behav-
ior of our algorithm in practice. It summarizes the hardware compo-
nents in the system, shows two automatically-generated network
maps, presents timings and message counts for the Berkeley Algo-
rithm, and makes a brief comparison with Myricom’s Algorithm.

5.1 Components and network maps

Figure 3 shows the constituent components for each of the A, B, and
C subclusters that comprise the Berkeley NOW system. Each sub-
cluster has approximately the same number of interfaces (i.e.,hosts),
switches, and links.

Figure 4 shows the results of mapping one of the NOW’s three sub-
clusters. The figure shows 35 hosts along the top row, three levels of
switches for a total of 13, and a distinguished utility machine at-
tached directly to a root. This machine runs the active mapper pro-
cess in the master/slave mode of operation. Note that the network is
an incomplete fat-tree and that it exhibits several irregularities. The
middle switch in the first level only has two links, instead of three,
to other switches. The third was faulty and removed, but never re-
placed. In addition, there are unused switch ports on all level 2 and
3 switches, leaving room for additional switches, additional switch-
to-switch connections, or hosts.

Zooming out allows us to see the entire 100 node cluster as of this
writing. Additional switches can be added to increase the number of
roots, thereby increasing the number of simultaneously usable
routes between subclusters as well as the bisection bandwidth.

Subcluster # interfaces # switches # links

A 34 13 64

B 30 14 65

C 36 13 64

Figure 3  A, B, and C subcluster components. Rows account for
network interfaces, switches, and links in each configuration. Each
host has one network interface.

5.2 Performance characterizations
As the subclusters are connected and mapped, Figure 6 shows the
total number of host and switch probes that are sent. Recall that
these probes are sent when a switch is popped off thefrontier and
explored. Because probes that do not generate responses time-out,
one measure of our algorithm performance is the ratio of probes
that generate responses to the total number of probes sent. Thehit
ratios for host probes and switch probes are shown. Probes that do
not generate responses are more expensive than others because
the message time-out period is longer than the time of an average
round-trip. For example, the first row shows that the algorithm
maps the C subcluster with 450 total messages of which 264 pro-
duced responses but 186 produced none. The message counts are
algorithmic properties, but the times in the next figure are imple-
mentation-specific.

System host hits ratio switch hits ratio

C 200 107 53% 250 157 62%

C+A 412 216 52% 491 295 60%

C+A+B 804 324 40% 1207 727 60%

Figure 6  Host and switch probe message hit ratios. Each row
shows the number of host and switch probes, the percentage that
end at a host or switch, respectively.

Figure 4  Network topology of the C subcluster. This 35-node
cluster is typical of the three subclusters of the system. The single
host at the bottom is a machine dedicated to running system
services (e.g., nameservers or the active mapper process).
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Figure 5  The 100-node NOW cluster network map. As shown
in the previous figure, irregularities persist. This is unsurprising
as system construction was incremental over a period of months.
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Figure 7 shows the minimum, average, and maximum times to map
three system configurations for the two operational modes of the
mapping system. The second column reports times when a single
master actively maps the network and all other hosts run mappers in
a passive, echoing mode. The third column shows the times when all
hosts run an active mapper and dynamically elect a leader as probes
are sent and received using the host identifiers.

5.3 Additional characterizations

During one run of the mapping algorithm on the C+A+B system, the
number of nodes and edges in the model graph as well as the number
of items on the frontier list were recorded after a frontier switch was
explored. Hence time is in units of “switch explorations” and not
“message probes”.

Figure 9 shows the results of processing this log. At exploration
number 150, nearly all of the hosts and switches in the system have
been found. However, the algorithm continues to explore until the fi-
nal prune is done. The final prune accounts for the plummet in val-
ues near exploration step 250. When done, the number of items on
the frontier list (the bottom line) is zero and the number of switches,
hosts and edges assume their final values (as can be derived from
Figure 3). At the maximum, the algorithm’s model graph has ~750
model graph nodes that eventually are merged and pruned into the
140 actual nodes.

The performance characterizations thus far have scaled the number
of interfaces, switches, and links. Figure 9 shows the factor of 8
speedup in mapping time from 1 host actively mapping the network
as additional hosts (running passive mappers) are added to the sys-
tem. Along the top line additional mappers were run in order of in-
creasing node number. The step-wise discontinuities occur as the
first mapper is run on subcluster. As more hosts are added within a
subcluster, the algorithm runs faster. On the bottom line, additional
mappers were run on randomly chosen nodes until all nodes were
filled. After 15 randomly-placed mappers are running, the execution
time is within a factor of 2 of its minimum, and after 20 the time is
within a factor of 1.5 of its minimum

5.4 Comparison to the Myrinet Algorithm
With the preceding performance analysis of the Berkeley Algo-
rithm, it is interesting to compare it to that Myricom Algorithm on
the identical hardware and system configurations. The point of inter-
est is in the number of messages sent (an algorithmic property). (We
suspect that the total number of messages can be reduced by factors
of 2 or more based upon our experience with cleverly choosing the
sequence that switch ports are probed.) Because this is a fundamen-
tally different algorithm, the categories of probe messages are differ-
ent from the Berkeley Algorithm’s. When examining the
performance summary in Figure 7, please consider that the Myricom
algorithm has had little opportunity to run on systems with more
than 13 switches or more than 40 processors. In fact, these are the
first runs and measurements of their algorithm on much larger sys-
tems.

System time(ms), one master
min / avg / max

time(ms), election
min / avg / max

C 248 / 256 / 265 277 / 278 / 282

C+A 499 / 522 / 555 569 / 577 / 587

C+A+B 981 / 1011 / 1208 1065 / 1298 / 3332

Figure 7  Mapping times for three systems and two operational
modes.Note the small variations in mapping times for C and C+A
regardless of the mode of operation, and the increased variation for
C+A+B, particularly with the election.

The Myricom Algorithm sends 3.2, 3.6, and 5.4 times the number
of probe messages to map the C, C+A, and C+A+B configura-
tions, respectively, as compared to the Berkeley Algorithm. The
Myricom Algorithm takes approximately 5.5, 3.9, and 3.9 times
longer to map the C, C+A, and C+A+B configurations, respec-
tively. Note that the times to map the networks reflects both algo-
rithmic and implementation differences, e.g.,execution on the
host versus in the network interface message processor.

5.5 Deadlock-free route computation

System loop host sw. comp total time
(ms)

C 134 713 152 450 1449 1414

C+A 283 1484 329 1234 3330 2197

C+A+B 424 2293 611 5089 8413 4009

Figure 10  Myricom Algorithm performance summary. The
columns account for the following types of probe messages: loop
for loopback cables, host for hosts attached to switch ports,
sw(itch) for switches attached to switch ports, and comp(are) for
disambiguating new switches from old ones.

Figure 8  Number of nodes in the model graph, edges in the
model graph, and items on the frontier list. The top line is the
number of edges. The middle is the number of nodes in the model
graph, and the bottom is the number of items on the frontier list.
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Once the master or elected leader generates a network map, it de-
rives mutually deadlock-free routes from it and distributes them
throughout the system. We use UP*/DOWN* [5] routing to impose
an edge ordering such that all valid routes are paths that follow zero
or more edges in the up direction, followed by zero or more edges in
the down direction. A valid route never turns from a down edge onto
an up edge. To compute the edge orderings, the algorithm picks a
switch as far away from all hosts as possible to use as the root of a
breadth-first labeling of the network map. Up edges point towards
the chosen root (i.e.,the bfs label of the head node is greater than the
bfs label of the tail node) and down edges point away from the cho-
sen root. We use the Floyd-Warshall [6] all-pairs shortest-paths al-
gorithm to compute compliant paths between all hosts. Where
multiple edges are available between two switches, the algorithm
has the option of randomly choosing among them for load balance.

The goodness of UP*/DOWN* routes is known to be highly topol-
ogy-dependant [5]. Two common effects are increased congestion
about the root and the creation of locally dominant switches in hy-
percubic networks. The BFS numbering of these switches is such
that all edges lead away from them. Consequently, no route will ever
use them because doing so would introduce a turn from a down edge
onto an up edge. These switches can be located and made useful for
routing by relabelling them with the minimum of their neighbors’
BFS labels minus one. Additionally, in our system, we ignore the
specially-designated utility host when picking a switch distant from
all hosts. This picks a natural root of the network and allows packets
to flow up to the least common ancestor of a source and destination
along deadlock-free routes. Of course, a strategically placed cable or
two can re-root the UP*/DOWN* tree.

UP*/DOWN* is an instance of the turn-model of Glass and Ni [7].
The fundamental idea is to prevent deadlock by analyzing and for-
bidding sequences of turns. Specifically, UP*/DOWN* routes mes-
sages along edges in one dimension, allows a single turn, and then
routes messages along edges in the second dimension. Turns from
the second to the first are not allowed. Dally and Seitz [8] present the
virtual channel model in which switches contain buffering to allow
multiple virtual channels to be multiplex onto physical links while
maintaining independence amongst the channels. They show dead-
lock-free routing on k-ary n-cubes, cube-connected cycles, and shuf-
fle-exchange networks and generalize to arbitrary networks, but, not
to arbitrary and reconfigurable ones. Ni and McKinley survey
wormhole routing techniques for direct networks, and give some at-
tention to arbitrary ones. They mention the approach of prioritizing
messages and routing messages with higher priorities around mes-
sages with low priorities in the context of virtual channels. Messages
traverse channels in an ordered way so as to avoid deadlock. This re-
quires buffering that cannot be bounded, as Owicki and Karlin note,
a priori with arbitrary and reconfigurable networks.

5.6 Related systems
Collectively, the differences between mapping local and wide-area
networks as discussed below result in the mapping problem for sys-
tem area networks assuming a new form that requires a qualitatively
different solution.

ATOMIC [20] network had a mosaic processor at each intersection
in the network. 64-node Mosaic mesh of processors and routers
comprised a single 8-port crossbar switch. The paper provides ex-
amples of mapping irregular networks with non-symmetric links.
The key was to use the processors at each cross point to forward a
mapping probe message while tagging the message with the output
port. Eventually a message will arrive back at the mapper and it can
start to deduce the structure of the network. The mapper went back
to pick up probe messages that arrived at a node and that were held
rather than being forwarded in a broadcast fashion. Implementing a

similar algorithm in the Myrinet network means sending well-de-
fined messages with a set of routing bytes on the front, then wait-
ing for responses and going and picking up extra messages at
nodes that are discovered.

There are classic papers on automatic network management with
the Digitial Autonet/AN1 network [10], [11], [5]. According to
Rodeheffer and Schroeder, “Our goal was to make Autonet look
to host communications software like a fast, high-capacity Ether-
net segment that never failed permanently.” Additionally, they
note the principle differences between the ARPANET [13] and
AN1 are wide-area and moderate-speed versus local-area and
high-speed. Today, this distinction is unclear. If system area net-
works establish a regime between local area networks and tradi-
tional massively parallel processor (MPP) networks, then AN1
more closely resembles a local/wide-area network than an MPP
network. AN1 switch latencies of 2 milliseconds are order of
magnitude larger than delays through network switches, such as
Myrinet.

While mapping, the network did not route application traffic. Ow-
icki and Karlin [5] also presents simulation results on the perfor-
mance of UP*/DOWN* routing and show its sensitivity to
topology and other artifacts. ARPANET could tolerate transient
forwarding loops but Autonet could not and thus could not be
“tolerated.” Consequently, “Autonet cannot carry host traffic
while reconfiguration is in progress.” This could cause deadlock,
should inconsistent forwarding tables arise. Thus, direct applica-
tion access to network was not supported, though many studies
[16, 17, 18, 19] now show that such direct bindings of physical
communication resources to virtual ones is necessary for obtain-
ing high-performance as networks move into the gigabyte per sec-
ond range. Processors in each switch periodically execute a
distributed topology acquisition algorithm. This updates forward-
ing tables in every switch used for message routing. Thus, AN1
switches effectively formed a parallel computer, where the
“hosts” were embedded in the switches. Pairs of switches could
monitor and agree upon the status of links connecting them. This
direct monitoring ability is unavailable in Myrinet-like networks,
where link states must be derived indirectly from hosts.

6 Future work
This paper has introduced a networking regime that raises inter-
esting algorithmic and architectural issues. Several are ripe for in-
vestigation: the accurate mapping of system area networks in the
presence of application cross-traffic, alternative schemes to UP*/
DOWN* for computing deadlock-free routes on arbitrary graphs,
randomized and parallel mapping algorithms, and network inter-
face and/or switch hardware support for directly obtaining switch
identifiers. This section briefly introduces and discusses them.

Accurately mapping the network is essential. Without accurate
maps, deriving deadlock-free routes is difficult, at best. Given a
realistic model of system area networks and their failure modes,
and a network traffic model, can a mapping algorithm be designed
and shown to produce an accurate map? It is possible that the
high-bandwidths and low-latencies in these networks can enable
(1) user-level communication layers, (2) network interfaces, and
(3) network switches to condition traffic to satisfy the necessary
requirements and assumptions. What are those requirements and
assumptions, and can they be both realistic yet theoretically trac-
table? Insisting upon an idle network, especially in a general-pur-
pose and multi-programmed system, is at best a stop-gap
measure.

Once system area network maps can be produced in the presence
of arbitrary network traffic (but not from an evil adversary), a sec-
ond area for investigation is finding more robust strategies for de-
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riving deadlock-free routes than UP*/DOWN*. UP*/DOWN* is
unpredictable, although in practice it can used and heuristics applied
to improve its results. There are two types of networks to consider:
(nearly)-perfect instances of well-known interconnects,e.g.,hyper-
cubes, and all the rest. When initially constructing a system, it is rea-
sonable to expect that a well-known, initial topology is used. Over
time, however, the topology may develop imperfections from the in-
cremental addition and removal of switches, hosts,etc.

Parallel mapping algorithms have the potential to increase perfor-
mance. The Myrinet and Berkeley Algorithms both systematically
explore the network in a sequential fashion. It is plausible that every
network host could map local regions, and upon discovering another
host exchange their partial maps. The central question is how to
merge such local views into a stable, globally-consistent one.

We conjecture that the network mapping problem may have good
solution using randomized techniques. One version of this is includ-
ing a randomized depth-first search hybridized with the breadth-first
search in the Berkeley Algorithm. When stuck in a region far from
a host, breadth-first starts to generate many replicates. If a few
depth-first branches locate any hosts, the merging routine can take
great advantage of them as reference points. There are many varia-
tions on this theme. In the Myrinet context, further suppose that the
firmware were changed a bit, so that instead of a “hit host too soon”
error causing a message to be discarded, the host could read it and
send a response. Vazirani has suggested [15] a coupon-collecting
initial phase to find most of the graph. Probes of maximal depth are
sent out in random directions. This is a considerable saving in probes
over randomized depth first search, since the whole length of the
path is effectively explored with one probe. The dangling edges of
the resulting graph can then be explored in a breadth-first way. If the
graph has sufficient expansion, we explore most of it quickly. When
an unknown switch is encountered, we can test if it is a previously
visited one found during coupon-collecting in the manner similar to
the one used by the Myricom Algorithm. It is likely we won’t ex-
plore far before hitting a switch we have seen before. Thus the
breadth-first cost of switch replication is curtailed.

Finally, it is tempting to believe that architectural support for self-
identifying switches would make the network mapping problem
trivial. However, due to different routing models, as well as the
cross-traffic problem, merely adding self-identifying switches does
not completely solve the mapping problem:if a probe made it to a
switch and back, it would carry a unique identifier and the explora-
tion process would be simpler. Of course, when considering chang-
ing switch hardware, one should consider the addition of self-
identification in the context of a laundry-list of other desirable fea-
tures. For example, programmable time-to-live fields at the link-lay-
er could simplify interface-to-interface protocols and error detection
and increase network performance for every message, not just for
relatively infrequent probes.

7 Conclusions
This paper has presented a network mapping algorithm for system
area networks, for which Myrinet is but one instance. The intuition
behind the algorithm was formalized leading to a proof of correct-
ness of the actual algorithm in use. Empirical performance results
and characterizations show that for networks of interest in the Ber-
keley NOW project, the algorithm performance is comparable with
the Myricom Algorithm. Although we have some evidence that the
algorithm can oftentimes correctly map the network even in the face
of heavy application cross-traffic, developing provably correct algo-
rithms for on-line mapping remains a challenging area for future
work. The technological niche filled by system area networks is a
unique mix of features of MPP and local area networks that pose a

qualitatively different mapping problem than in either the tradi-
tional MPP or distributed system domains.
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