
The Lonely NATed Node

Chad Yoshikawa
University of Cincinnati
yoshikco@ececs.uc.edu

Brent Chun
Intel Research Berkeley
bnc@intel-research.net

Amin Vahdat
U.C. San Diego

vahdat@cs.ucsd.edu

Abstract
In this paper we take the position that current research
in the area of distributed systems has all but forgotten
about one of the largest collective Internet resources - the
NATed node. These are hosts that are behind Network
Address Translation (NAT) gateways and are hidden by
the fact that they have private IP addresses. We argue that
Distributed-Hash Tables [18], P2P systems [5], and Grid
Computing[9] could greatly benefit by tapping into this
forgotten pool of resources. Also, we give an outline of
a service, the Distributed-Hash Queue (DHQ), that can
enable these NATed resources to be exploited.

1 Introduction
At least since the days of Networks of Workstations [1],
researchers have been attempting to harvest the idle cy-
cles of the desktop. Now, however, these desktop ma-
chines are no longer accessible due to the proliferation
of NAT gateways. In fact, some studies have shown that
there exists a large population of users (in some cases a
majority) which is hidden due to NAT gateways. In [11],
it was shown that the percentage of public hosts that par-
tipated in a video multicast event was only between 7%
and 57%. In addition, LimeWire network measurements
[12] typically show that the number of hosts accepting
incoming connections is less than half that of all total
hosts. Of course, this number may be due to a number of
factors including firewalls and the personal preference of
the user. However, the ubiquity of NAT gateways almost
certainly has an impact.

1.1 What Effect Does this Have?

The most obvious and direct effect is that the NATed
node’s CPU, disk, and (sometimes limited) network
bandwidth is not being used by current distributed sys-
tems. For example, the Grid [9] applications could
greatly increase performance by utilizing the large col-

lective computing power of the NATed nodes. In fact,
some specialized Grid applications such as the GIMPs
[10] prime search have make use of NATed resources to
great effect by finding the largest known Mersenne prime
number to date. This application, however, makes use
a specialized client which coordinates through a central
server. What is needed is a distributed, public service
which can enable NATed nodes to coordinate and com-
municate with one another.

Distributed-hash tables (DHTs) have been used as the
basis for P2P filesystems [15] and multicast [3] appli-
cations. DHTs themselves are based on key-based rout-
ing (KBR) [7] protocols including Chord [21] and Pastry
[18], among others. The key facet of KBRs is that they
enable large scale networks to be grown while limiting
the number of network hops needed for communication
to

������������	�
�

. While KBRs and the applications that

are built on top of them have proven extremely useful, it
has been shown these multi-hop routing algorithms mat-
ter most when the network size exceeds a certain thresh-
old. Depending on the application, the threshold can be
as small as 100,000 nodes or as large as a billion [17]. In
fact, research on KBR protocols [18] regularly report on
experimental results from network emulators of 100,000
nodes. Given that one of the largest network testbeds,
PlanetLab [4], has 500 nodes, how are we going to build
a testbed of 100,000 nodes? Accesing the large pool of
NATed nodes may be the answer.

1.2 A Solution

We argue for a general purpose solution to these prob-
lems which enables bidirectional communication to
NATed nodes. This will make these nodes available to
Grid computing engines, DHTs and other P2P systems.
The solution has several requirements that we identify
below:

 It must be publicly addressible. In other words,

1

there must be a fault-tolerant set of front-end nodes
by which private nodes can gain access.

 It must provide network storage. NATed nodes are
presumably more dynamic than their public coun-
terparts. Thus, the solution must provide a reliable
store-and-forward messaging service.

 It must scale. In order to handle a large population
of NATed nodes, the solution must be scalable.

This proposed service shares many of the qualities
found in a Delay-Tolerant Network (DTN) [8] including
addressibility and network storage/retransmission. This
is not a coincidence; we argue that the Internet (due to
the NATed nodes) is in fact a challenged network and re-
quires a DTN to function properly.

To accomplish this, we advocate building a DTN
for the Internet using a new distributed data structure,
the distributed-hash queue (DHQ). The distributed-hash
queue is similar to another popular distributed data struc-
ture, the distributed-hash table [18]. Both operate on
top of a key-based routing protocol, meaning that they
provide a mapping from large K-bit keys to data. The
main difference is that the distributed-hash queue pro-
vides a push and pop interface vs. the traditional DHT
put and get operations. This allows the DHQ to sup-
port messaging from NATed node to NATed node. For
example, the sender pushes a message to the receiver’s
queue and the receiver subsequently performs the cor-
responding pop operation. More sophisticated request-
reply matching can be done by including a tag field on
all queue elements, so that a request and its correspond-
ing reply tags match. We have created a prototype im-
plementation of the DHQ system and describe it in the
following sections.

2 Background
The DHQ system makes extensive use of the Pastry key-
based routing (KBR) protocol. Pastry is used to imple-
ment the DHQ name service and to help in replicating
queue state. While Pastry is used for the implementation,
any KBR protocol would be sufficient. In this section, we
give a brief background of the Pastry system. For a com-
plete description, please see [18].

In the most basic sense, Pastry maps 160-bit keys to
IP addresses. Thus, given any 160-bit key, Pastry will
return the closest IP address to that key. This provides
the basis of the DHQ name service, since we need to

map queue names (160-bit keys) to the host that owns
the queue state.

In the Pastry system, the 160-bit key space is config-
ured in a ring (from 0 to �����������) and the nodes are
distributed along the ring. All nodes are assigned a node
ID which consists of a 160-bit key and a IP address. Us-
ing a consistent hashing algorithm (e.g. SHA), the IP
address is deterministically hashed to a key. In addition
to being deterministic, the hashing algorithm also gener-
ally provides a uniform distribution of keys. So the nodes
are roughly distributed in the 160-bit key space in a uni-
form manner. For an actual distribution of 8 nodes, see
Figure 1.

X.35

X.20

X.21

X.82

X.4
X.19

X.34

X.5

X.225

Figure 1: This figure shows eight Pastry nodes with a
nearly uniform distribution along the 160-bit ID space.
Only the last part of each node’s IP address is shown.

Our DHQ exploits two important features of Pastry:
the

������������	�
�

number of hops between sender and re-

ceiver and its location-independent names. This allows
the DHQ service to scale to a large number of nodes and
to proactively move data around faults in the network.

3 Distributed Hash Queues
A DHQ provides durable network storage that can be
used to facilitate communication between disconnected
hosts. (Think of it as moving send queues and receive
queues into the network.) A sending host places network
packets into the DHQ and a receiving host subsequently
pulls packets from the DHQ. All queues are named using
160-bit keys and a queue lookup (naming) service has
been built on top of the Pastry key-based routing proto-
col. The DHQ prototype runs on top of the PlanetLab
network testbed using Java.

2

The DHQ service consists of N nodes running on the
PlanetLab which are publically addressable (i.e. have
public IP addresses) and participate in a single Pastry ring
(group of cooperating nodes). See Figure 2.

Pastry Ring Gateway

B

Gateway

A

NAT

Node A

NAT

Node B

Figure 2: This figure shows the logical structure of the
DHQ service. Two communicating NATed nodes, A and
B, connect to the DHQ service via the closest respective
gateway node.

Pastry

Naming Service

DHQ Service

Gateway Service

NAT Node B

Pastry

Naming Service

DHQ Service

Gateway Service

NAT Node A

Figure 3: This figure shows the layered structure of the
DHQ system. The arrows indicate communication be-
tween layers and between entities.

The DHQ system consists of three services: a reliable
naming service, a gateway service (for accepting requests
from NATed nodes), and the core reliable queueing ser-
vice. See Figure 3 which shows the layered structure of
the DHQ system.

3.1 Reliable Naming Service

All queue operations operate on named queues and must
use the naming service in order to locate the queue own-
ers. The naming service provides a mapping from queue
names (160-bit keys) to a set of K locations which repli-
cate the queue state for redundancy. In addition, in or-
der to prevent the naming service itself from becoming
a single point of failure in the system, names are repli-

cated across K nodes for fault-tolerance. (In practice, K
is chosen to be 3.) The name-to-queue-owners binding
is replicated by making use of the Pastry replica-set fea-
ture which finds the K closest nodes to a particular ID.
A queue name is first converted to a Pastry key ����� , and
then the Pastry system is used to locate the K node han-
dles which may contain the name binding.

For example, consider a lookup of the queue named
“foo”. First, the name “foo” is converted into a
Pastry key � ���! #"%$ which begins with the hex digits&('*)!)!+(,.-/-/-

. A request message for a list of name replicas
(0 ��� �2143657�83 �:9�;#<�=�> � =�=�<?� �) is then sent to the Pastry
node with ID closest to the key

&('�)!)!+(,@-/-/-
. This closest

node responds with a list of K replica node IDs. A name
lookup is then attempted in parallel to each of these repli-
cas, and the first valid response is returned to the caller.
(A similar mechanism is used by the PAST storage sys-
tem [19].)

3.2 Gateway Service

The NATed nodes do not participate in the Pastry ring,
i.e. they do not own a part of the Pastry ID space. This
is by design since NATed nodes are assumed to be highly
dynamic and would introduce a high churn rate [16]
into the system which would decrease stability. Instead,
NATed nodes communicate to the Pastry ring nodes using
a Gateway Protocol over standard TCP/IP. Commands
are sent as human-readable single-line ASCII strings in
order to ease parsing and debugging. The Gateway sup-
ports commands including the basic push and pop opera-
tions.

NATed nodes attach to Gateway nodes by using a boot-
strap process that is based on the nearby-node algorithm
from [2] in order to find the closest Gateway node. In
our experience, the nearby-node algorithm tended to be
biased towards returning the seed node and an improved
algorithm based on Vivaldi [6] network coordinates is
currently underway.

3.3 Reliable Queue Service

Queues are replicated across a set of K nodes (K is 3 in
practice) which are specified upon creation of the queue.
They are implemented as priority queues where the mes-
sage timestamps denote priority. This provides a total
ordering on messages given synchronized global clocks.
Given weaker time synchronization, however, the prior-
ity queues still serve a purpose: they provide a consistent
ordering of packets in replicated queues. Therefore, if

3

messages are replicated across a set of K queues, the pri-
ority feature ensures that messages will be seen by queue
readers in the same order. Queue operations (e.g., push,
pop, peek) are multicast to the queue owners. Creating
strongly consistent replicated queues is the focus of our
current work.

In order to preserve the queue state over long delays,
the queue name bindings and queue state are periodically
re-replicated. The invariant that we try to maintain in the
system is that queues and name bindings have 3 replicas
at all times.

4 Related Work
In this paper, we have described a mechanism for allow-
ing communication to a NATed network node with a pri-
vate IP address. Some related work in this area has at-
tempted to tackle this very problem including AVES [13]
i3 [20], and IPNL[14]. The main difference between our
approach and these approaches is that the DHQ provides
stable network storage.

In AVES, the NAT gateway (and DNS server for per-
formance reasons) is modified in order to support incom-
ing connections to private IP hosts. A public network
waypoint address serves as the virtualization of the pri-
vate IP address, and relays IP packets from a public IP
address to the private IP address through the modified
AVES NAT gateway. The main constaint on the AVES
solution is that it requires gateway software modifica-
tions which may not be administratively possible by all
NATed clients.

The Internet Indirection Infrastructure (i3) is another
possible choice as a substrate for building a DTN. In i3,
packets are sent not to an IP address but rather to a ren-
dezvous node identified by an m-bit key, called � . An
overlay network then routes data packets to the node as-
sociated by

= 1 ;#; � =�=A��BC� �
 in the Chord system. Any in-
terested parties can register triggers with the rendezvous
node (again, using the key � to identify the rendezvous
node). The triggers then forward packets to the interested
nodes. What i3 provides through this indirect communi-
cation is the ability for recipients to be mobile. However,
i3 does not provide network storage for packets as is re-
quired by a DTN - packets are simply forwarded by a
trigger as soon as they arrive.

The IP Next Layer (IPNL) system [14] provides con-
nectivity to NATed hosts by extending IP addresses to
be a triple of a public IP address, realm ID, and private
IP address. Other network communication remains the

same, so that the IPNL does not handle the long stor-
age delays that are inhernet to DTNs. Also, while IPNL
provides a general purpose NAT-to-NAT communication
mechanism, it does so by modificating the IP layer and
therefore requires router modifications.

5 Conclusion
In this paper we have motivated the need for a new ser-
vice, the distributed-hash queue (DHQ) which enables
NATed hosts to join the traditional Internet. This dis-
tributed data structure has been described and shown to
support the operations needed for NAT-to-NAT commu-
nication. It is our hope that the DHQ can enable dis-
tributed systems, such as DHTs and Grid computations,
to reach a multitude of new hosts that were previously
inaccessible.

References
[1] T. E. Anderson, D. E. Culler, D. A. Patterson, and

and the NOW team. A case for now (networks of
workstations). IEEE Micro, 15(1):54–64, 1995.

[2] M. Castro, P. Druschel, Y. C. Hu, and A. Row-
stron. Exploiting network proximity in distributed
hash tables. In O. Babaoglu, K. Birman, and
K. Marzullo, editors, International Workshop on
Future Directions in Distributed Computing (Fu-
DiCo), pages 52–55, June 2002.

[3] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Row-
stron, M. Theimer, H. Wang, and A. Wolman. An
evaluation of scalable application-level multicast
built using peer-to-peer overlays. In Infocom’03,
Apr. 2003.

[4] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Pe-
terson, M. Wawrzoniak, and M. Bowman. Planet-
lab: an overlay testbed for broad-coverage services.
SIGCOMM Comput. Commun. Rev., 33(3):3–12,
2003.

[5] L. P. Cox and B. D. Noble. Samsara: honor among
thieves in peer-to-peer storage. In ACM Symposium
on Operating Systems Principles, pages 120 – 132,
2003.

[6] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris.
Practical, distributed network coordinates. In Pro-
ceedings of the Second Workshop on Hot Topics in

4

Networks (HotNets-II), Cambridge, Massachusetts,
November 2003. ACM SIGCOMM.

[7] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz,
and I. Stoica. Towards a common api for struc-
tured peer-to-peer overlays. In Proceedings of the
2nd International Workshop on Peer-to-Peer Sys-
tems (IPTPS03), Berkeley, CA, 2003.

[8] K. Fall. Delay-tolerant networks. In Proceedings of
ACM SIGCOMM 2003, Karlsruhe, Germany, Aug.
2003.

[9] I. Foster, C. Kesselman, and S. Tuecke. The
anatomy of the Grid: Enabling scalable virtual or-
ganizations. Lecture Notes in Computer Science,
2150, 2001.

[10] P. Golle and I. Mironov. Uncheatable distributed
computations. Lecture Notes in Computer Science,
2020, 2001.

[11] Y. hua Chu, A. Ganjam, T. E. Ng, S. G. Rao, K. Sri-
panidkulchai, J. Zhan, and H. Zhang. Early expe-
rience with an internet broadcast system based on
overlay multicast. Technical Report CMU-CS-03-
214, CMU, Dec. 2003.

[12] LimeWire Host Count.
http://www.limewire.com/english/content/netsize.shtml,
2004.

[13] T. S. E. Ng, I. Stoica, and H. Zhang. A waypoint
service approach to connect heterogeneous inter-
net address spaces. In Proceedings of the General
Track: 2002 USENIX Annual Technical Confer-
ence, pages 319–332. USENIX Association, 2001.

[14] P. F. Ramakrishna. Ipnl: A nat-extended internet
architecture. In Proceedings of the 2001 confer-
ence on Applications, technologies, architectures,
and protocols for computer communications, pages
69–80. ACM Press, 2001.

[15] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon,
B. Zhao, and J. Kubiatowicz. Pond: The oceanstore
prototype. In Proceedings of USENIX File and
Storage Technologies (FAST), 2003.

[16] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz.
Handling churn in a dht. Technical Report CSD-03-
1299, UCB, Dec. 2003.

[17] R. Rodrigues and C. Blake. When multi-hop peer-
to-peer routing matters. In 3rd International Work-
shop on Peer-to-Peer Systems (IPTPS’04), Feb.
2003.

[18] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems. In IFIP/ACM International
Conference on Distributed Systems Platforms (Mid-
dleware), pages 329–350, Nov. 2001.

[19] A. Rowstron and P. Druschel. Storage management
and caching in past, a large-scale, persistent peer-
to-peer storage utility. In Proceedings of the eigh-
teenth ACM symposium on Operating systems prin-
ciples, pages 188–201. ACM Press, 2001.

[20] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet indirection infrastructure. In
Proceedings of ACM SIGCOMM Conference (SIG-
COMM ’02), Aug. 2002.

[21] I. Stoica, R. Morris, D. Karger, M. Kaashock, and
H. Balakrishman. Chord: A scalable peer-to-peer
lookup protocol for internet applications. In Pro-
ceedings of ACM SIGCOMM, Aug. 2001.

5

