Bootstrapping a Distributed Computational Economy
with Peer-to-Peer Bartering

Brent Chun Yun Fu Amin Vahdat
Intel Research Berkeley Duke University Duke University
bnc@intel-research.net fu@cs.duke.edu vahdat@cs.duke.edu

Abstract

This paper presents an architecture for distributed com-
putational economies based on peer-to-peer bartering.
Our architecture is based on the position that computa-
tional economies ought to be bootstrapped based on a
layer of simple and robust resource exchange. The ar-
chitecture is comprised of three pieces: (i) resource dis-
covery, (ii) secure resource peering, and (iii) bartering.
Together, these pieces address the end-to-end problem of
describing, discovering, and exchanging distributed re-
sources in a secure and decentralized manner. Key in
our approach is the ability to securely exchange resources
across delegated paths of trust. This, combined with se-
cure resource peering, allows peers to engage in resource
exchange with directly connected peers, in addition to
peers whom they do not have direct bartering relation-
ships with. Given the bartering economy as a base, we
envision an evolutionary path towards more complex sce-
narios by layering richer functionality at higher layers.

1 Introduction

Over the last two decades, numerous proposals [16, 14, 3,
12, 9, 17] have emerged for economic-based distributed
resource management in large-scale distributed systems.
Still, we have yet to observe the widespread deployment
and use of such systems in practice. We argue that a key
reason for such lack of adoption is the initial complexity
of the proposals. The vast majority of previous proposals
presume both the existence and widespread acceptance of
abstract currencies (and associated infrastructure) from
the start. In contrast, history shows that real economies
do not evolve this way. Real economies virtually always
begin with simple bilateral exchange based on bartering.
A number of successful large-scale, distributed systems
similarly are rooted in simple base functionality and in-
troduce richer functionality at higher layers [15, 5]. In

both cases, simplicity and robustness are critical to pro-
moting growth and providing the foundations for layer-
ing additional complexity. Given these historical prece-
dents, we propose that a distributed computational econ-
omy should be bootstrapped based on a thin layer that en-
ables simple and robust resource exchange through bar-
tering and that richer functionality ought to be layered on
top.

Our work is motivated by providing transparent access
to remote resources, largely in the context of network ser-
vices, where it is advantageous to have multiple vantage
points on the network. Of course, we believe that many
of our goals are applicable to other distributed systems as
well, in particular the Grid [10]. We envision a bartering
economy as providing the basis for decentralized growth
and as a foundation for layering additional functionality
at higher layers. Examples of higher level functionality
include abstract currencies, computational analogues of
financial instruments (e.g., CPU futures), and distributed,
incentive-compatible economic mechanisms [8].

In this paper, we present a baseline architecture
for bootstrapping distributed computational economies
based on peer-to-peer bartering, with an eye to its sup-
port in the PlanetLab network testbed [13]. The archi-
tecture consists of three pieces: (i) resource discovery,
(ii) secure resource peering, and (iii) bartering. Together,
these pieces address the end-to-end problem of describ-
ing, discovering, and exchanging distributed resources in
a secure and decentralized manner. Work on an imple-
mentation is currently underway.

2 Resource Discovery

Resource discovery is the process of binding specific re-
sources to an abstract description of the services required
for a particular user or program. This process requires
a number of components: i) a resource description lan-

guage that allows peers to describe the resources they
are making available for sharing, ii) a query language
that allows a peer to express resources of interest, iii)
a resource discovery system that accepts query requests,
evaluates them, and returns query results. A resource dis-
covery system takes the resource availability information
provided by peers and exposes that information to other
peers through a query language.

2.1 Resource Description Language

The resource description language is a common language
used to describe computational resources. Peers in the
baseline bartering economy use this language for two
purposes. First, the language expresses resources avail-
able for sharing before any bartering occurs. A stan-
dard protocol for exposing this information might then
be used to enable automated querying of peers to dynam-
ically discover what resources are currently available and
to subsequently engage in a bartering protocol to agree
on an exchange rate. Second, the language expresses lo-
cal resources being exchanged through ongoing bartering
relationships and remote resources available as a result of
bartering relationships (i.e., analogous to advertising the
reselling of a peer’s resources acquired through barter-
ing).

Thus, the resource description language essentially ex-
presses the terms of a bartering exchange. It should be
expressive since the resources being advertised will have
varying levels of complexity and it should be extensible,
since we do not know a priori what resources peers might
want to advertise. Concretely, it might describe the num-
ber of nodes being made available by a peer, which in
turn might represent the interests of an entire adminis-
trative domain. Classes of nodes might then be charac-
terized based on their CPU, memory, network, 1/O, and
storage capacity, which in turn might be provided in con-
tiguous, non-overlapping time intervals AT in length. To
acquire resources for a long-running application, peers
would then need to engage in continuous rounds of bar-
tering to continuously acquire resources for their appli-
cations.

2.2 Resource Discovery Systems

Our architecture does not prescribe a single resource dis-
covery system. For flexibility and to encourage healthy
competition, it instead provides the baseline language to
express available resources at a low-level and allows mul-
tiple, competing, co-existing resource discovery systems

to use this information and expose it using query lan-
guages which provide varying degrees of expressiveness
and expose information at different levels of abstraction.
Resource discovery systems are initially likely to expose
resources at a level of abstraction that mirrors that of the
underling resource description language. Longer term,
we envision resource discovery systems that allow re-
sources of interest to be succinctly described at a high
level. In all cases, queries presented to the system must
ultimately be mapped back to a set of distributed re-
sources and the names of the peers where those resources
are available.

A resource discovery system must ultimately be be
scalable, fault-tolerant, and decentralized. Initially,
we might start with simple centralized solutions based
on established technology such as relational databases.
Longer term, we envision transitioning to to emerging,
decentralized, distributed query processing systems such
as PIER [11] and IrisNet [6].

3 Secure Resource Peering

Once the peers with required resources have been dis-
covered, a reliable, accountable, and scalable resource
exchange framework must be established to provide the
mechanisms for peer-to-peer resource bartering. We have
implemented a secure highly available resource peering
(SHARP) system [4] on PlanetLab [13], a global over-
lay testbed, for discovering and sharing resources based
on pairwise resource exchange and resource exchange
across paths of delegated trust.

SHARP represents resource delegation using tickets,
which assert that a peer (the holder) controls a set of an-
other peer’s resources over some time interval (its term).
Each ticket is signed with the private key of the resource
owner (the issuer). A holder may delegate a portion of
the resources claimed in a ticket to another peer by issu-
ing a subticket for a subset of the resources over a subin-
terval of the term, signing and concatenating it with the
original ticket as a new ticket. The cryptographically
signed tickets are unforgeable, non-repudiable, and in-
dependently verifiable by third parties.

3.1 Oversubscription

The holder of a ticket can redeem it from the issuer for
resources specified in the ticket. However, a resource
owner may oversubscribe its resources by issuing more
tickets than it can support to improve resource availabil-
ity and utilization. A ticket holder can also replicate the

ticket to multiple peers. Thus, the issuer of a ticket only
honors the ticket with probabilistic assurance. The prob-
ability that an issuer honors a ticket depends on the over-
subscription degree and the rate of ticket redemption. If
the issuer honors the ticket, the specified resources are
allocated and a lease is returned to the ticket holder as
a hard guarantee for the ownership of the resources. A
lease can be renewed to allow for continuous use of the
same resources. Such renewals may or may not involve
acquiring additional tickets. Thus, a ticket is a soft claim
for resources, while a lease is a hard claim for resources.
Peers exchange resources with tickets rather than leases.

Since tickets can be replicated arbitrarily, a ticket is-
suer must maintain a ticket tree for all redeemed tickets
and the amount of redeemed resources with each ticket
to detect conflicts of delegation. To build the tree, each
delegation in a ticket must be associated with a global
unique ID to identify the transaction. Thus each ticket
can construct a unique path through a leaf ticket to the
root ticket on the issuer ticket tree, where the root ticket
must be released by the issuer. If a redeemed ticket does
not exceed the resource amount allocated to its ances-
tors, the issuer honors the ticket. If the ticket causes a
conflict at any ancestor, the issuer refuses to redeem the
ticket and considers the ancestor at the earliest conflict
to be accountable for the conflict. So tickets provide
an accountable means for SHARP to support transitive
resource delegation, the basis for resource exchange in
SHARP.

The optimal oversubscription degree is a function of
multiple target metrics, including utilization, availability,
and rejection rate. An oversubscription degree of 1 im-
plies that a peer issues exactly enough tickets that it can
support given its resources. In this case, if some paths
of trust to a given peer are not being fully utilized, then
tickets issued by that peer to some subset of its immedi-
ate peers may go unused while associated resources go
idle. By increasing the oversubscription degree, both uti-
lization and availability can increase in the presence of
unused tickets. On the other hand, by increasing the over-
subscription degree, the probability of a rejection also in-
creases. The observed rejection rate will be a function
of the oversubscription degree, the peering graph, and
the workload. The optimal oversubscription degree will
be one that balances desired utilization and availability
against the expected rejection rate (see [4] for a quanti-
titive analysis of these trade-offs).

Since a ticket is a soft claim, it can potentially be re-

jected when being redeemed for resources. Rejection can
occur either because the desired resources were oversub-
scribed and are being fully utilized, or because a peer
is acting maliciously and claiming its resources are fully
utilized when in fact they are not. Because oversubscrip-
tion can potentially result in tickets being rejected un-
der normal operation, peers must already be prepared to
handle ticket rejection. Determining whether a peer re-
jected a request intentionally or not is a separate mat-
ter. From a peer’s point of view, if requests are being
rejected, the bottom line is that resources are not being
acquired. In response to this, we propose that peers rene-
gotiate exchange rates based on the number of rejections.
If a peering relationship is proving not to be fruitful, then
it is probably in the peer’s best interest to either renego-
tiate for a more favorable exchange rate or stop peering
altogether.

3.2 Pathsof Trust

In SHARP, peers can obtain tickets from each other by
pairwise ticket exchange if they establish a trust relation-
ship. Also, peers can dynamically discover and exchange
tickets with a remote peer without a direct trust relation-
ship by discovering a path to the remote peer through a
series of trust relationships and recursive pairwise ticket
exchange. Currently, SHARP uses a BGP-like protocol
SRDP (secure resource discovery protocol) to discover
paths of trust. Each peer advertises to all direct peers the
routes it uses to reach other peers. Eventually each peer
maintains multiple paths to other peers. When a peer at-
tempts to obtain tickets for resources from a remote peer,
the peer selects a path based on any path selection algo-
rithm and starts ticket bartering with the next-hop peer
on the path, which in turn repeats pairwise bartering un-
til the required tickets are obtained. Since SRDP enables
a peer to maintain trust relationships with a limited num-
ber of peers and obtain global resources from all peers
reachable through paths of trust, it lowers the barriers of
entry for new peers to participate in the system.

4 Bartering

In a distributed computational economy, we propose bar-
tering as the foundation for simple and robust resource
exchange. Higher layers then build on this foundation
to provide sophisticated methods of exchange and in-
frastructure for increased functionality. In the bartering
economy, we use SHARP as the core by using its secure
resource exchange protocols for peer-to-peer bartering

and its mechanisms for discovering and utilizing paths of
delegated trust to enable resource sharing across chains
of peers. Given SHARP as a basis, we must then address
three additional aspects of the bartering economy: bar-
tering strategies, advertising of bartering exchange rates,
and path selection algorithms and mechanisms.

4.1 Bartering Strategies

Bartering strategies specify how peers negotiate ex-
change rates for peering and how peers execute the peer-
ing protocol. Negotiating exchange rates involves deter-
mining what amount of resources a peer X exchanges
with a peer Y as part of the peering and how many such
exchanges will occur. We can view an execution of the
peering protocol as a sequence of rounds, each of which
involves X exchanging some amount of resources with
Y. The amount of resources exchanged in a given round
is based on an assessment of how valuable a peer’s re-
sources are. The number of rounds involves a trade-off
between locking in a good exchange rate and being able
to dynamically respond to changing conditions. Strate-
gies for determining a parameterization can range from
very simple ones (e.g., simple static configuration) to
complex ones based on dynamic information (e.g., cur-
rent load, observed supply/demand).

Execution of the peering protocol depends upon peers
correctly and faithfully executing the protocol. In a large-
scale distributed system, it is infeasible to assume that
all peers can be trusted to behave properly. In a barter-
ing economy, each peering relationship can be viewed as
an instance of an iterated Prisoner’s Dilemma. In each
round, peers play an instance of the Prisoner’s Dilemma.
Here, we assume that if peers engage in a peering rela-
tionship, then remote resources are more valuable than
local resources. Otherwise, the peers would not have
agreed to participate in the peering in the first place. Let
Ry,.q; denote the value of local resources and R ¢pmote the
value of remote resources. The reward R for cooperation
is thus Ryemote — Riocar- The punishment M for mutual
defection is 0. Finally, the temptation to detect 7" and the
sucker’s payoff S are Ryemote aNd — Ryocar, respectively.
Hence, we have the necessary conditions for a Prisoner’s
Dilemma: T >R > M > S.

To encourage large-scale cooperation amongst peers,
strategies must be cognizant of defections and respond in
an appropriate manner to encourage cooperative behav-
ior. Strategies based on reciprocity and feedback have
these properties. Such strategies involve two elements.

First, we need mechanisms to detect defections. For ex-
ample, in the context of the SHARP peering protocol, we
can observe a defection in a given round as the absence of
a peer’s sending of appropriate tickets. Second, we need
strategies that determine whether a peer cooperates or de-
fects based on historical information on how the peer has
behaved in the past. Throughout society in various are-
nas (e.g., political, social, military, etc.), we observe situ-
ations where large-scale cooperation and reciprocity oc-
cur despite the temptation of peers to defect. Effective
strategies tend to be optimistic (e.g., largely cooperative
and forgiving) and responsive to feedback by observing
reciprocity and punishing peers when they defect.

One simple strategy based on reciprocity that has
proven to be remarkably robust and effective against a
wide range of competing strategies is TIT FOR TAT [2].
TIT FOR TAT is the strategy of beginning with cooper-
ation and, thereafter, doing whatever the other peer did
in the previous round. It is simple, encourages cooper-
ation, punishes defection (but is forgiving), and in prac-
tice outperforms virtually all competing strategies in a
number of situations. Given this, one natural strategy for
bootstrapping a computational economy is to start with
P2p TiT FOR TAT, where resource exchange in a round
is rewarded with resource exchange in the next round
and reneging in a given round is punished by reneging
in the next round. Given this base strategy, we can then
augment it with additional features for additional robust-
ness. For example, we could share P2P TIT FOR TAT
history information with friendly peers (and use thresh-
olds or quorums to increase our confidence in the infor-
mation) to better engage in interactions with peers whom
we have limited or no previous history information for.
This essentially constitutes a form of robust P2P reputa-
tion management.

In environments where the set of peers is fairly static
and peers tend to interact with large numbers of other
peers, P2P T1T FOR TAT is an appropriate strategy. Plan-
etLab, our initial target environment, fits this profile.
As of May 2003, the PlanetLab testbed consists of 151
nodes, hosted by 69 sites, spanning 13 countries. Target
applications for PlanetLab are planetary-scale network
services (e.g., content distribution networks, global stor-
age systems, etc.) which require wide geographical cov-
erage for reasons including performance, fault-tolerance,
crossing of administrative/political boundaries, and hav-
ing multiple vantage points of the network. Such appli-
cations naturally involve sites peering with many other

sites in order to allocate resources for an application.
This property, combined with a fairly static set of peers,
suggests that P2p TiT FOR TAT will be effective. On
the other hand, in environments where the set of peers
is large and dynamic, the probability that any two peers
interacts decreases. Thus, P2p TIT FOR TAT will be
less effective. In such environments, more sophisticated
strategies will need to be employed. Recent work in dis-
tributed trust and reputation systems is addressing this
problem.

4.2 Advertising Exchange Rates

Once peering relationships have been arranged through
SHARP, associated bartering parameters then need to
be advertised so peers can perform appropriate opti-
mizations. Each set of bartering parameters between a
pair of peers essentially specifies an exchange rate. A
source wanting to acquire resources at a remote desti-
nation might use these exchange rates to minimize the
amount of local resources used to acquire remote re-
sources across a path of peering relationships. Making
exchange rate information available could be achieved in
a number of ways. One natural approach is to annotate
SHARP paths of trust advertised through the SRDP pro-
tocol with exchange rate information. The necessary ex-
change rate information would then be available locally
to each peer in its local SHARP routing table.

4.3 Path Sdlection

Once the appropriate resources have been discovered, the
next step is acquiring tickets for those resources based
on paths of trust established by SHARP. This process in-
volves examining the source’s local SHARP routing table
and selecting a path of trust for each desired destination’s
resources. Given desired resources at a particular peer,
there could be many paths of trust from the source to a
given destination. Along each path of trust is a sequence
of ongoing pairwise bartering agreements, each with its
own exchange rate. Selecting the optimal trust path is a
local optimization problem.

Algorithms to select optimal trust paths will use path
and exchange rate information from a local SHARP rout-
ing table to optimize for some target metrics. In practice,
two examples of target metrics might be the number of
peering hops to the destination (analogous to BGP) and
the amount of resources relinquished to acquire the re-
mote resources. In an economic setting, the latter is a
more natural metric since it minimizes the cost of per-

forming the pairwise bartering.

Once a path of trust is selected, we next need a mech-
anism to coordinate the pairwise bartering exchanges for
a source to exchange resources for the desired destina-
tion resources along this path. In doing this, the source
might provide tickets representing local resources, or it
might provide tickets representing remote resources ac-
quired through its local peering relationships. In either
case, the source needs to instruct the peers along the path
of trust to perform bartering with specific next-hop peers
in reaching the destination. This then allows the source
to ultimately acquire the remote resources based on the
selected path in a manner similar to source-based IP rout-

ing.
5 Conclusion

In this paper, we presented an architecture for distributed
computational economies based on peer-to-peer barter-
ing. We described the end-to-end process of describing,
discovering, and exchanging distributed resources in a
secure and decentralized manner. We then presented an
architecture that supports this process based on SHARP,
a secure highly available resource peering framework.
SHARP provides secure resource exchange protocols that
enable peer-to-peer bartering and provides mechanisms
for discovering and utilizing paths of delegated trust to
enable resource sharing across chains of peers. Given
SHARP as a base, we then described the remaining mech-
anisms needed for peer-to-peer resource bartering and
discussed bartering strategies based on reciprocity and
feedback. Mirroring the evolutionary path followed by
economies in the real world, we believe that a distributed
computational economy should be bootstrapped using a
bartering economy based on simple and robust resource
exchange.

Given peer-to-peer bartering as a base, we envision
that human nature will lead to the formation of a power-
law distribution [7, 1] in the peering graph. That is,
a few peers will establish peering relationships with a
large number of other peers. The presence of a large
number of such high-degree nodes may lead to a "CSP”
(Computational Service Provider) model with analogy to
ISPs. These CSP’s may accept cash in return for re-
source rights. In time, the CSP’s may become trusted
well enough that they no longer barter using their local
resources and instead grant generic “currency” that can
be directly redeemed for resources at all of the sites that
they peer with. Through some pre-established trust rela-

tionship, sites that receive such generic currency will be
able to trust that the generic currency is valid and that re-
sources should be delivered appropriately. All this would
take place without involving a middle man.

References

[1]

(2]

3]

[4]

[5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

L. Adamic and B. Huberman. Power-law distribu-
tion of the world wide web. Science, 287(2115a),
2000.

R. Axelrod. The Evolution of Cooperation. Basic
Books, 1984.

R. Buyya, J. Giddy, and D. Abramson. A case for
economy grid architecture for service-oriented grid
computing. In Proc. of HCW’ 01, Apr. 2001.

J. Chase, B. Chun, Y. Fu, S. Schwab, and A. Vahdat.
Sharp: An architecture for secure resource peering.
Under review.

D. Clark. The design philosophy of the darpa in-
ternet protocols. In Proc. of SGCOMM ’88, Sep.
1988.

A. Deshpande, S. Nath, P. B. Gibbons, and S. Se-
shan. Cache-and-query for wide area sensor
databases. In Proc. of SGMOD ’'03, Jun. 2003.

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
Proc. of SGCOMM '99, Aug. 1999.

J. Feigenbaum and S. Shenker. Distributed algorith-
mic mechanism design: Recent results and future
directions. In Proc. of DIALM ' 02, 2002.

D. F. Ferguson, C. Nikolau, and Y. Yemini. An
economy for flow control in computer networks. In
Proc. of INFOCOM ' 89, Apr. 1989.

I. Foster and C. Kesselman. Globus: A metacom-
puting infrastructure toolkit. Intl. J of Supercom-
puter Applications, 11(2):115-128, 1997.

M. Harren, J. M. Hellerstein, R. Huebsch, B. T.
Loo, S. Shenker, and I. Stoica. Complex queries in
dht-based peer-to-peer networks. In Proc. of IPTPS
02, Mar. 2002.

L. Levy, L. Blumrosen, and N. Nisan. On line mar-
kets for distributed object services: the majic sys-
tem. In Proc. of USTS’01, Mar. 2001.

[13]

[14]

[15]

[16]

[17]

L. Peterson, D. Culler, T. Anderson, and T. Roscoe.
A blueprint for introducing disruptive technology
into the internet. In Proc. of HotNets-I, Oct. 2002.

O. Regev and N. Nisan. The popcorn market — an
online market for computational resources. In Proc.
of ICE '98, Oct. 1998.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-
end arguments in system design. TOCS 2(4):277-
288, Nov. 1984.

C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O.
Kephart, and S. Stornetta. Spawn: A distributed
computational economy. IEEE Transactions on
Software Engineering, 18(2):103-177, Feb. 1992.

R. Wolski, J. Plank, and J. Brevik. G-commerce —
building computational marketplaces for the com-
putational grid. Technical Report CS-00-439, The
University of Tennessee at Knoxville, Apr. 2000.

