
DART: Distributed Automated Regression Testing
for Large-Scale Network Applications

Brent N. Chun

Intel Research Berkeley
2150 Shattuck Ave. Suite 1300

Berkeley, CA 94704
Tel: +1 510-495-3075
Fax: +1 510-495-3049

bnc@intel-research.net
Keywords: Distributed systems, Performance Analysis, Testing, Validation

Abstract

This paper presents DART, a framework for distributed
automated regression testing of large-scale network ap-
plications. DART provides programmers writing dis-
tributed applications with a set of primitives for writing
distributed tests and a runtime that executes distributed
tests in a fast and efficient manner over a network of
nodes. It provides a programming environment, scripted
execution of multi-node commands, fault injection, and
performance anomaly injection. We have implemented
a prototype implementation of DART that implements a
useful subset of the DART architecture and is targeted at
the Emulab network emulation environment. Our proto-
type is functional, fast, and is currently being used to test
the correctness, robustness, and performance of PIER, a
distributed relational query processor.

1 Introduction

Recently, we have seen the emergence of a number of
novel wide-area applications and network services. Ex-
amples include distributed hash tables (DHTs) [24, 19,
21, 18, 31], wide-area storage and archive systems [11,
12, 5], distributed query processors [10, 29], content dis-
tribution networks [14, 8], robust name services [17], and
routing overlays [1, 25]. These distributed applications
provide diverse functionality to end users, but neverthe-
less have one common goal: to deliver correct behav-
ior and high performance in the presence of high con-
currency, node and network failures, and transient and

persistent performance anomalies. Designing and imple-
menting applications with these characteristics presents
significant technical challenges.

With sequential (i.e., single-node) applications, unit
testing [4] is an effective and widely used mechanism
for building correct, robust, and maintainable software.
In unit testing, users write tests that exercise and verify
the functionality of specific parts of an application. Over
time, users build up a collection of such tests, each cov-
ering an increasing fraction of the application’s overall
functionality. A testing framework automates the execu-
tion of unit tests and is applied whenever the application
is modified. The end result is that code changes can be
automatically verified to have not broken existing func-
tionality (as covered by the unit tests), thereby leading to
increased confidence when performing significant mod-
ifications to existing code. Building on these ideas, the
motivation of this work is to develop an analogous set of
automated testing mechanisms with associated benefits
for large-scale network applications.

Designing appropriate mechanisms for automated test-
ing of distributed applications presents several chal-
lenges. First, such mechanisms need to be fast and scal-
able to enable large-scale testing and performance anal-
ysis. This, in turn, will enable programmers developing
distributed applications to obtain rapid feedback on the
implications of incremental design and implementation
choices. Second, such mechanisms should be flexible to
allow applications to be tested along multiple dimensions
including correctness, robustness (e.g., in the presence
of faults), and performance. Finally, these mechanisms

1

should enable testing under a wide range of operating
conditions in terms of network delays, bandwidth, and
packet loss in addition to node and network faults and
performance anomalies.

To address these challenges, we have designed DART,
a framework for distributed automated regression testing.
DART provides users with a programming environment
and a set of primitives which can be used to construct
a wide variety of distributed tests. Building on a set
of scalable cluster tools, DART also provides a runtime
that enables efficient execution of such distributed tests
at scale. DART targets cluster-based network emulation
environments such as Emulab [30] and ModelNet [26]
to enable testing under a wide range of network oper-
ating conditions. Such environments typically provide
two networks: an emulated network to emulate wide-
area network delays, bandwidth, and packet loss and a
separate, non-emulated control network (e.g., 100 Mbps
or Gigabit Ethernet). It is the latter network that DART
uses to efficiently and reliably control the execution of
distributed tests.

We have implemented a prototype of DART that is
targeted to the Emulab [30] network emulation environ-
ment. The system implements a core subset of our design
which provides enough functionality that we have found
it to be useful in practice. In particular, we have and
continue to use DART to test and benchmark PIER [10],
a distributed relational query processor that runs over a
DHT. This paper describes the motivation, design, im-
plementation, and performance analysis of DART and is
organized as follows. In Section 2, we motivate the need
for automated large-scale testing for distributed applica-
tions. In Section 3, we present DART’s system architec-
ture. In Section 4, we describe a prototype implemen-
tation of DART targeted for Emulab. In Section 5, we
measure the performance of our DART implementation
for core primitives, a baseline distributed application, and
PIER. In Section 6, we present related work and in Sec-
tion 7, we conclude the paper.

2 Large-scale Distributed Testing

With single-node applications, unit testing frameworks
provide two key components to the programmer: a set
of commonly used mechanisms for writing tests and a
runtime that automates test execution. Common mech-
anisms in unit testing frameworks include templates for
setting up and tearing down unit tests, functions for ver-

ifying that actual outputs match expected outputs, and
functions for communicating test outcomes back to the
user. Using these mechanisms, programmers write tests
that verify the functionality of specific parts of their ap-
plication. Depending on the test, verification might in-
clude verifying that actual outputs match expected out-
puts, that bad / corner case inputs are handled correctly,
that an application meets expected target performance
metrics, and so forth.

A key benefit of these unit testing frameworks is that
they lower the barrier to verifying correctness, robust-
ness, and performance in an application’s implementa-
tion. By providing a common set of mechanisms to write
tests and a runtime to execute tests, unit testing frame-
works make developing, maintaining, and applying unit
tests less cumbersome and less error prone by factor-
ing out a common set of machinery and by automat-
ing the test execution process. When the barrier to run-
ning tests is low, programmers employ them more often
and subsequently reap the benefits of verifying that what
worked before continues to work even after significant
code changes.

While unit testing is pervasive in the world of single-
node applications, there has been little work on provid-
ing an analogous set of mechanisms for large-scale dis-
tributed applications. We believe that providing such
mechanisms will be a key enabler towards rapidly build-
ing distributed applications that are correct, robust, and
deliver high performance under a wide range of oper-
ational environments. Providing such mechanisms re-
quires factoring out and implementing commonly used
mechanisms for distributed testing and implementing a
runtime layer that executes these mechanisms in a fast
and efficient manner. Ensuring that the testing infras-
tructure is itself fast and robust is key since rapid, correct
feedback to the programmer usually implies that the pro-
grammer will use the system more often when develop-
ing.

3 Architecture

This section describes the DART system architecture. As
mentioned, the goal of a DART system is to support auto-
mated testing of large-scale distributed applications. For
a given distributed application, a user may wish to per-
form a variety of tests that test the application’s correct-
ness, robustness, and performance under a range of op-
erating environments. DART supports automated execu-

2

tion of a suite of such distributed tests, where each test
involves: (i) setting up (or reusing) a network of nodes
to test the application on, (ii) setting up the test by dis-
tributing code and data to all nodes, (iii) executing and
controlling the distributed test, and finally (iv) collecting
the results of the test from all nodes and evaluating them.
To support this automation, DART relies on a number of
components (Figure 1) which are described further in this
section.

DTest 1 DTest 2 DTest n

Distributed Test Suite

Postprocessing
Preprocessing & Perf Anomaly

InjectionFault InjectionTest Execution

Programming
Environment

File Transfer
Execution
RemoteNetwork

Topology

DART

Figure 1: DART architecture. Each distributed applica-
tion has a suite of distributed tests. Each test is instanti-
ated and executed using DART.

3.1 Network Topology

The first step in executing a DART test is setting up a
network of nodes to test the application on. In emulated
network environments, such networks are constructed us-
ing a set of cluster machines with emulated inter-node
network delays, bandwidth, and packet loss. In Emu-
lab [30], for example, users set up experiments consisting
of network topologies which specify end hosts, routers,
and network links with varying delay, bandwidth, and
loss characteristics. Each experiment is then physically
instantiated using a set of cluster nodes, a per-experiment
VLAN, and wide-area network emulation using Dum-
myNet [20]. ModelNet [26], another emulation environ-
ment, provides similar functionality. In addition, its adds
per-hop delay, bandwidth, and loss emulation as well
as distillation of large network topologies which enables
trade-offs between scalability and emulation accuracy to
be made (e.g., when using large network topologies [7]).

Given a target environment, a DART implementation
provides two ways for a user to specify network topolo-

gies. First, DART provides a set of parameterizable net-
work topologies (routers and end hosts), each of which
maps down to a description in an underlying network
topology language (e.g., Emulab ns-2 files). Second,
DART supports raw network topologies as expressed
in the target platform’s network topology language. In
DART, parameterizable topologies are provided mainly
as a convenience. Such topologies might include topolo-
gies representative of real networks, topologies which
might be easy or hard for different classes of applica-
tions, and/or topologies that reflect realistic end host het-
erogeneity in terms of last-hop bandwidth, latency, and
host availability [22]. In many cases, we anticipate pa-
rameterizable topologies will provide a sufficiently broad
range of environments to test and characterize the be-
havior of a distributed application before moving to-
wards real wide-area network environments (e.g., Plan-
etLab [15], RON [2], etc.) where additional noise can
make it difficult to ascertain whether observed problems
are due to the application or due to the infrastructure and
the real world.

3.2 Remote Execution and File Transfer

The second step in executing a DART test is setting up
the test by distributing code and data to all nodes. Ef-
ficiently setting up and subsequently (Section 3.4) exe-
cuting distributed tests in DART relies heavily on two
key components of the DART runtime: multi-node re-
mote execution and multi-node file transfer. In DART,
there are a number of cases where multi-node remote ex-
ecution is needed. For example, in testing a peer-to-peer
application, multi-node remote execution might be used
to start the application up on all nodes in the system and,
some time later, to start a set of clients who issue re-
quests. Before such a test can even run, code and data
will also need to be distributed to all nodes, and this fur-
ther requires having the ability to perform multi-node file
transfers. Remote execution needs to be efficient because
nodes might be controlled in various ways throughout a
test (e.g., starting up servers, starting up clients, creating
and controlling adversaries, etc.). File transfer needs to
be efficient because code and data may be large and dis-
tributing such data to multiple nodes in a large scale test
will be costly if it is read from, say, a centralized NFS file
server. Consequently, a DART implementation needs to
provide fast remote execution and file transfer primitives
if the system aims to scale up to large system sizes.

3

3.3 Scripting and Programming Environment

To facilitate writing distributed tests, DART provides
scripting to specify high-level details of test execution
and a minimal programming environment which pro-
vides low-level details for writing actual distributed test
code that runs on the system. Each test in DART has both
an XML test script and test code and data. The test script
specifies a unique test name, a unique topology name (to
enable topology reuse), a network topology (e.g., an Em-
ulab ns-2 file), test code and data, a test duration, a pre-
processing script, a set of scripted commands, a set of
scripted faults, a set of scripted performance anomalies,
and a postprocessing script. Test scripts are interpreted
by DART and associated actions are executed using the
DART runtime. For example, a script for a distributed
storage system might specify code and data for the stor-
age system, start a set of storage servers on all nodes,
start a client that writes and reads specific data, and ver-
ify consistency of the results in a postprocessing script.

DART provides a minimal programming environment
to facilitate the writing of distributed test code. When ex-
ecuting DART tests, one node is designated as the master
while all remaining nodes are designated as slaves. The
DART runtime uses the master as the point of control
for executing and coordinating the entire test. Similar
to GLUnix [16], any scripted command executed on any
node through DART is provided with the following envi-
ronment variables:

• DART TEST: unique test name.

• DART NODES: space-delimited list of node IP ad-
dresses on the emulated network.

• DART NUM NODES: number of nodes in the DART
test.

• DART MY VNN: node number from 0 to
DART NUM NODES - 1.

• DART MASTER: master’s emulated IP address.

• DART GEXEC MASTER: master’s control IP ad-
dress.

• DART MY IP: this node’s emulated IP address.

• DART GPID: globally unique identifier for this par-
ticular test instance.

• DART COMMON DIR: directory for code and data
common to all nodes.

• DART MY INPUT DIR: input directory for per-
node code and data.

• DART MY OUTPUT DIR: output directory for per-
node code and data (e.g., for writing test output, log-
files, etc).

• DART ALL OUTPUT DIR: aggregated output di-
rectory of all DART MY OUTPUT DIR directories.
This directory is populated during a collect phase at
the end of a test.

Using these environment variables facilitates writing
distributed tests using DART. For example, consider test-
ing the correctness of query evaluation in PIER. Such a
test needs to instantiate a PIER process on every node
and it needs to instantiate clients on a subset of nodes,
each of which will issue queries to the system and save
the results for verification. Starting PIER up on a node
minimally requires at least one piece of information: the
IP address of a landmark node to bootstrap all nodes
into the DHT. Using the above environment, one ob-
vious possibility for this is to simply use the DART
master (DART MASTER). Each PIER process will also
want to save relevant output for potential debugging
(e.g., stderr in case an exception occurs) and PIER
clients will need to save query results for postprocess-
ing to verify query evaluation correctness. Using the
above environment, capturing program output would be
done by simply writing files to DART MY OUTPUT DIR.
When the test completes, DART collects output from
all DART MY OUTPUT DIR directories on all nodes and
places them in DART ALL OUTPUT DIR on the mas-
ter where the results of the test are then computed (e.g.,
checking actual output against known, correct output).

3.4 Preprocessing, Execution, and Postprocess-
ing

The third and fourth steps of executing a DART test are
executing and controlling the distributed test and, lastly,
collecting the results of the test from all nodes and eval-
uating them. Each distributed test in DART goes through
preprocessing, execution, and postprocessing phases to
compute the results of the test. Each of these phases
is scripted by the user using the primitives provided by
DART. Given a network of nodes (e.g., an experiment on

4

Emulab) and code and data that has been distributed to
those nodes, preprocessing is the first stage and entails
executing whatever commands that are necessary before
actually running the test. For example, if software pack-
ages (e.g., RPMs or tarfiles) were distributed as part of
the code and data distribution phase, then preprocessing
would be the place where one-time installations of this
software would take place. We separate preprocessing
from the actual execution of the test since, for a given
application, we expect it will be frequently be the case
that an application performs the same preprocessing in
each of a series of tests (e.g., installing the same set of
RPMs, such as the Java JDK in PIER’s case).

Once preprocessing is complete, DART then pro-
ceeds to the execution phase where execution and con-
trol of the distributed test is performed to completion.
This phase primarily entails scheduling and executing
user-specified, scripted commands on specific subsets of
nodes at specific points in time (e.g., starting a set of
servers up, starting a set of clients, etc.). Further, de-
pending on the test, it might also involve injecting faults
and performance anomalies in certain parts of the system
at certain points in time. A churn test for a peer-to-peer
application, for example, might involve first starting the
application on all nodes in the system, letting the system
stabilize for several minutes, then injecting a sequence
of node join (scheduled command) and leave (scheduled
process or node fault) events into the system and measur-
ing the system’s behavior over time (e.g., the success or
failure of routing requests in the case of structured peer-
to-peer overlays).

Finally, once the distributed test has finished execut-
ing, a postprocessing stage is performed to collect all the
output from all the nodes and to apply a user-specified
postprocessing test to process the test’s output and verify
its goodness. The definition of goodness will be specific
to the application and the type of test being performed.
For example, a correctness test might verify that actual
replies to client requests match the correct, expected val-
ues (which would be computed offline a priori). A ro-
bustness test might verify that after killing some subset of
nodes that the system continues to function as expected
(e.g., suppose it was designed to be k-fault tolerant). Fi-
nally, a performance test might compute the overall per-
formance numbers from all nodes and verify that these
performance numbers lie within some expected bounds.
Each test produces output, which may optionally be sent
back to the user’s machine (e.g., performance numbers)

and returns a 1 or a 0 depending on whether the test suc-
ceeded or failed (as defined by the user).

3.5 Fault Injection

To understand how a distributed application behaves in
the presence of node and network faults, DART also pro-
vides fault injection primitives which may be specified by
the programmer when scripting a distributed test. Which
primitives are supported in a particular implementation
will depend on the capabilities of the underlying plat-
form. In the best case, node, process, and network fail-
ures are all supported and can be scripted to execute at
specific times on specific parts of the system (e.g., a spe-
cific subset of nodes):

• Node failures: specifies hard failures of specific
subsets of nodes over specific periods in time. In
Emulab, such failures can be scripted using under-
lying support from Emulab’s event system.

• Process failures: specifies the hard failure of spe-
cific processes (e.g., by name, by uid, etc.) on a
given node. In contrast to node failures, the node
continues to operate properly.

• Network failures: specifies the failure of specific
parts of the network at specific points in time. As
with node failures, network failures can also be
scripted through support from Emulab’s event sys-
tem (e.g., to turn a network link off at a specific
time).

3.6 Performance Anomaly Injection

In addition to hard node and network faults, another im-
portant class of failures of interest are performance fail-
ures [3]. For example, consider the case where a 1.5
Mbps network link does not fail completely but its ef-
fective bandwidth drops to 0.001 Mbps. While techni-
cally the link has not failed in the sense that it fails to
route packets, the performance impact of such a perfor-
mance degradation is likely to have significant implica-
tions for application performance. Understanding how
applications behave in the presence of such performance
faults is an important step towards building robust dis-
tributed applications. Towards this end, DART provides
a set of primitives to introduce performance anomalies
into the system. Similar to hard failures, the types of

5

scripted performance anomalies supported by DART in-
clude:

• Node and process performance anomalies: de-
creased or varying CPU, memory, network, and I/O
performance. Such anomalies might be introduced
by using sufficient powerful schedulers [28, 9, 6, 23]
in combination with support from the underlying
emulation environment.

• Link performance anomalies: increased delay, de-
creased bandwidth, and increased packet loss in spe-
cific parts in the network. Such anomalies might be
introduced using support provided by the underly-
ing target platform (e.g., using Emulab’s event sys-
tem to dynamically change link delays, bandwidth,
and packet loss).

4 Implementation

We have implemented a DART prototype targeted to the
Emulab network emulation environment. Our prototype
is implemented using a combination of C and Python
and supports a subset of the architecture described in
Section 3. Parameterizable network topologies, efficient
multi-node remote execution and file transfer, a script-
ing and programming environment, and preprocessing,
execution, and postprocessing of arbitrary scripted com-
mands at specific times on subsets of nodes are all sup-
ported. Our prototype is functional, efficient, and is cur-
rently being used on a routine basis for testing, debug-
ging, and benchmarking PIER.

4.1 GEXEC and PCP

As mentioned, multi-node remote execution and file
transfer are key primitives that are used heavily through-
out DART and hence need to be fast and efficient. To
address this need, we have designed and implemented
GEXEC, a fast multi-node remote execution system, and
PCP, a fast, multi-node file transfer utility. Both sys-
tems rely on a hierarchical design based on a k-ary tree
of TCP sockets over a specific set of nodes (e.g, nodes
specified using the GEXEC SVRS environment variable
for GEXEC). Such trees are built on every invocation of
either the gexec or pcp command using a O(logk(n))
tree building step which involves routing tree create mes-
sages down to leaf nodes and routing tree create acknowl-

edgments back to the root. We use a tree-based ap-
proach primarily for parallelism and to utilize aggregate
resources across all nodes.

GEXEC provides multi-node remote execution of ar-
bitrary commands by routing commands down the tree to
all nodes. For all commands, GEXEC supports transpar-
ent forwarding of Unix signals, stdin, stdout, and
stderr to allow control of remote processes and also
obtain remote output. Control and data are all transferred
over the tree, down in the case of signals and stdin and
up in case of stdout and stderr. Two remote exe-
cution models are supported: default and detached. In
default mode, the failure model is that if any node fails
during the execution, GEXEC aborts on all nodes. In
contrast, in detached mode, GEXEC simply builds the
tree, starts the command on all nodes, and exits. Both
modes are used in DART (e.g., default mode for execut-
ing bootstrapping commands, detached mode for running
the application being tested, which might crash).

PCP provides fast multi-node file transfer by routing
files down the tree in an incremental fashion in 32 KB
chunks. Starting with the root, chunks are sent to each
node’s children. As each chunk is received, each node
writes the chunk to local disk, then forwards the chunk
off to each of its children. Because files are transferred
using a k-ary tree and transferred in chunks (which incur
small store-and-forward delays as compared to sending
the entire file at once), PCP provides both parallelism
and pipelined execution that leads to very high aggre-
gate bandwidth usage. Generally, the optimal choices for
tree fanout and message size will depend on node net-
work bandwidth, the network’s configuration, and disk
write bandwidth. As we show in the next section, us-
ing a fanout of 1 and 32 KB messages delivers high per-
formance on Emulab and thereby makes multi-node file
transfer a highly efficient primitive in our DART proto-
type.

4.2 Master and Slaves

Our DART prototype targets the Emulab network em-
ulation environment and uses GEXEC and PCP as the
basis for fast distributed test execution (Figure 2). In
our implementation, tests are remotely instantiated and
controlled using two machines: users.emulab.net
and a master node arbitrarily chosen from the set
of nodes in the test’s network topology. We use
users.emulab.net to manage network topologies

6

for DART (e.g., creating and destroying experiments).
Each node in an Emulab experiment is assigned one or
more emulated IP addresses and one control IP address.
We use users.emulab.net to obtain information
about the network configuration of each Emulab exper-
iment. This information is subsequently used to control
distributed test execution by running GEXEC and PCP
over the fast, control network.

users.emulab.net

Slave

Slave

Master

User’s Machine

SlaveSlave

Emulab Topology

DART cmds

DART cmds

Slave

start/end

Figure 2: DART implementation on Emulab.

Each Emulab experiment created using DART is boot-
strapped with a few common features that are required
for DART to operate properly. First, each node is boot-
strapped with a small set of core software including
GEXEC, PCP, and authd, an authentication service
used by both GEXEC and PCP. Second, each node is con-
figured to boot the RedHat 7.3 Linux distribution which
uses the Linux 2.4.18 kernel. The common software set
is required since this software forms of the basis of the
DART runtime. The use of Linux on the nodes is needed
primarily because the versions of GEXEC and PCP cur-
rently used in DART do not run on FreeBSD, the other
node operating system available on Emulab.

Once an Emulab topology is instantiated, all subse-
quent control is done through the master which essen-
tially serves as a proxy for executing distributed tests in
DART. Among the master’s tasks are: distributing code
and data to all nodes, providing the programming en-
vironment for distributed tests, and performing prepro-
cessing, execution, and postprocessing of tests across all
nodes. In our current implementation, we use ssh to se-
curely execute commands on the master and use GEXEC
to execute commands and PCP to transfer code and data
to other nodes in the system. For example, to reset an ex-

periment such that it can be reused, we use ssh to send
a reset command to the master and use GEXEC, invoked
from the master, to quickly reset all nodes in the network
by remotely removing old files and killing old processes
from the previous test.

5 Evaluation

In this section, we analyze the performance of our DART
implementation. We begin by measuring the perfor-
mance of two key primitives: multi-node remote execu-
tion and multi-node file transfer. As described in Sec-
tion 4, these primitives are implemented by GEXEC and
PCP, respectively, and are used extensively in our DART
prototype. Next, we analyze the overall performance of
performing DART tests for both a baseline distributed ap-
plication and PIER, a distributed relational query proces-
sor. All experiments were performed on Emulab. The
first set of experiments were performed on 64 Pentium
III nodes: 18 of which were 600 MHz nodes with 256
MB of memory, 46 of which were 850 MHz nodes with
512 MB of memory. The second set of experiments were
performed on 32 Pentium III nodes: 10 of which were
600 MHz nodes and 22 of which were of the 850 MHz
variety. All nodes in both cases ran the Linux 2.4.18 ker-
nel and were connected via 100 Mbps Ethernet.

5.1 Performance of DART Primitives

The first set of measurements characterizes the perfor-
mance of multi-node remote execution and multi-node
file transfer using GEXEC and PCP. Figure 3 depicts
remote execution performance on multiple nodes using
GEXEC. Each curve corresponds to GEXEC’s perfor-
mance using a different tree fanout. Recall that GEXEC
performs multi-node remote execution by first building a
k-ary tree where k is the fanout at each non-leaf node and
using this tree to control remote execution. Each point
on each curve represents the remote execution time (mil-
liseconds) to execute a simple command (/bin/date)
on n nodes (n = 1, 2, 4, . . . , 64). Each point on each
curve is the average of 30 different runs on a subset of
Emulab nodes. Overall, we observe that remote execu-
tion using GEXEC is fast (typically about 100 ms) and
that remote execution times do not appreciate much as
we scale the system size up. This, in turn, implies fast
and efficient control of distributed tests in DART using
GEXEC.

7

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32 64

GE
XE

C T
ime

 (m
illis

eco
nds

)

Number of Nodes

fanout=2
fanout=4
fanout=8
fanout=16

Figure 3: GEXEC performance on Emulab. Each curve
corresponds to a different tree fanout, while each point
represents the remote execution time (milliseconds) to
execute a simple command (/bin/date) on n nodes
(n = 1, 2, 4, . . . , 64).

Next, we perform a similar experiment to measure the
performance of multi-node file transfer using PCP. Sim-
ilar to GEXEC, PCP also builds a k-ary tree and uses
this tree to perform parallelized, pipelined file transfer.
Figure 4 shows the aggregate bandwidth delivered when
distributing a 34.7 MB file (the Java 1.4.2 03 JDK RPM)
to n nodes (n = 1, 2, 4, . . . , 64) using PCP and using 32
KB messages. Each curve corresponds to a different tree
fanout and each point on each curve is the average of 20
different runs. Using a tree fanout of 1 (i.e., a chain),
we observe that PCP is able to deliver an average of 548
MB/s of aggregate bandwidth when distributing a 34.7
MB file to 64 nodes. Larger tree fanouts do not help in
the case of Emulab since each node is connected by 100
Mbps Ethernet (i.e., 12.5 MB/s of peak bandwidth) and
each node can write to disk at least that fast. Hence, our
DART prototype uses PCP’s default fanout of 1 which,
as shown, delivers high performance and enables data to
be moved around efficiently when conducting large-scale
DART tests.

5.2 Overall DART Performance

The second set of measurements quantify the overall per-
formance of performing DART tests for both a baseline
distributed application and a real distributed application
(PIER). The baseline distributed application is the null
distributed application. It’s an application that runs on 32

0

100

200

300

400

500

600

1 2 4 8 16 32 64

PC
P A

ggr
ega

te B
and

wid
th (

MB
/s)

Number of Nodes

fanout=1
fanout=2
fanout=4

Figure 4: PCP performance on Emulab. Each curve
corresponds to a different tree fanout, while each point
represents the aggregate bandwidth delivered when dis-
tributing a 34.7 MB file (the Java 1.4.2 03 JDK RPM) to
n nodes (n = 1, 2, 4, . . . , 64) using PCP.

nodes but does not perform any computation. The test re-
turns immediately and thus the times associated with this
test are, in the current implementation, a lower bound
on the total time to execute a distributed test in DART.
PIER, as mentioned, is a distributed relational query pro-
cessor that runs over a DHT. We use DART to routinely
perform a number of tests on PIER. In this instance, we
present performance results when testing the correctness
of a distributed selection query on 32 nodes using differ-
ent query plans (e.g., different packet sizes). (The test
queries static per-node data and hence we know what the
correct query result ought to be.) The time to perform this
particular test once the test has been set up on all nodes is
700 seconds. The goal of these measurements is to show
that the overhead of performing DART tests is small rel-
ative to distributed test times, which we anticipate will
involve running a test for at least several minutes (e.g., as
in the PIER selection query test) in most cases.

Each test involves four potential components. First,
there is the time to set up the network topology
for the test (esetup). This involves the time to se-
curely transfer an Emulab network topology file to
users.emulab.net and to instantiate the Emulab
experiment. Second, there is the time to set up a particu-
lar distributed test (dsetup). The main cost here is trans-
ferring code and data to the master node in the Emulab
experiment and distributing code and data to the slaves.
Third, there is the time to perform preprocessing, exe-

8

cute and control the distributed test, collect the results on
the master, and perform postprocessing (drun). Fourth,
there is the cost of reseting the test environment on all
nodes (dreset)). This involves clearing out results from
the previous test and killing all processes associated with
the previous test. Note that a test may reuse a network
topology from a previous experiment if that test uses the
same topology (e.g., the same 32-node topology in our
measurements). When running a test for the first time on
a network topology, no dreset cost is incurred since the
system is clean, whereas when reusing a topology for a
different test, the dreset cost must be paid.

Base Base reuse PIER PIER reuse
esetup 202.3 − 206.3 −
dsetup 16.2 16.0 52.6 46.2
drun 28.8 29.2 758.7 735.7
dreset − 4.2 − 4.0
Total 247.3 49.4 1017.6 785.9

Table 1: Breakdown of overall times (seconds) to run
distributed tests on 32 Emulab nodes using DART for a
baseline null application and a 700 second correctness
test in PIER for a distributed selection query.

Table 1 shows the overall times (seconds) to run dis-
tributed tests on 32 Emulab nodes using DART for a
baseline null application and a 700 second correctness
test in PIER for a distributed selection query. For both
the baseline and for PIER, we present results when a new
Emulab experiment is instantiated and when an existing
Emulab experiment is reused (the reuse columns), the lat-
ter case requiring an additional reset component to pre-
pare for a new test.

We observe the largest baseline cost to be esetup, the
time to instantiate a new 32-node Emulab experiment.
Measurements on Emulab revealed this time to be, on
average, 204.3 seconds which is consistent with previ-
ous measurements [30]. The relatively high cost of cre-
ating a new Emulab experiment suggests reusing existing
Emulab experiments when conducting tests on the same
network topology. As mentioned, reusing a topology
requires an additional reset phase to clear old files and
kill old processes. Our measurements indicate that these
costs are, on average, 4.1 seconds which is relatively low.
Still, this number is relatively high compared to GEXEC
remote execution times. (We use GEXEC to clear old
files and kill old processes from the master.) This is
largely due to our use of a new ssh connection each time

we communicate with either users.emulab.net or
the master. This overhead is also a significant compo-
nent in the other baseline costs as well, namely dsetup
and drun which on average were 16.1 seconds and 29.0
seconds respectively. When reusing the network topol-
ogy, the total baseline cost to execute a null distributed
test on 32 nodes was 49.4 seconds.

Turning to PIER, the key numbers of interest are the
dsetup and drun times. We measured the average dsetup
time for PIER to be 49.4 seconds, while for the base-
line, the average dsetup cost was 16.1 seconds. The
main difference between the two is the additional cost
associated with transferring code and data to the mas-
ter and from the master to all slaves. In the PIER case,
code and data transferred from the user’s desktop to the
master was 3.32 MB in size (four different directories),
while code and data transferred from Emulab’s NFS file-
server to the master totaled 37.0 MB, the size of the Java
1.4.2 03 JDK and the static data being queried. As shown
in Figure 4, transferring data from the master to all slaves
using PCP is efficient. However, as with the baseline,
liberal use of new ssh connections again incur signif-
icant overhead. In the current implementation, each di-
rectory being transferred causes a new ssh connection to
be created to the master, each of which usually takes ap-
proximately 2-3 seconds. We intend to optimize this by
establishing a single secure connection with the master
and reusing it in the future. This should reduce the gap
between the baseline and PIER by approximately 12-18
seconds.

Despite the overhead of multiple ssh connections to
the master, we see that the overhead of using DART to
perform distributed tests of PIER is still quite reasonable
relative to the typical time to perform a meaningful test.
In this case, the selection query correctness test needs
to run for 700 seconds. This includes a 120 second de-
lay to allow the DHT to stabilize and for PIER to build
up a multicast tree to perform query dissemination to all
nodes. It also includes the time to perform a selection
query in four different ways, in each case allowing the
query to run for 120 seconds and leaving 10 seconds in
between each query to avoid query interference. Finally,
a minute is alloted before finally shutting down the test,
which leads to a test time of 700 seconds. Relative to the
total time, the DART overhead in this case is 11.3% (i.e.,
85.9 seconds out of 785.9 seconds) which we believe is
quite reasonable given the ssh performance improve-
ments we intend to make and the fact that distributed

9

testing using DART is entirely automated and does not
require any human intervention.

6 Related Work

There have been relatively few efforts aimed at building
frameworks for large-scale testing of distributed appli-
cations. In this relatively small space, the closest re-
lated project is TestZilla [27]. Like DART, TestZilla
provides a framework for testing distributed applications
and leverages a set of scalable cluster-based tools in its
implementation. In TestZilla, distributed tests are exe-
cuted through a centralized coordinator and the system
provides mechanisms for network topology specification
(in a non-emulated cluster setting), file system and pro-
cess operations, barrier synchronization, and logging and
collection of output files. Architecturally, DART and
TestZilla share many of the same characteristics although
both aim to provide slightly differing feature sets. Unlike
DART, which focuses on wide-area distributed applica-
tions in an emulated network environment, TestZilla is
focused primarily on cluster-based applications in a Win-
dows environment. As a consequence of this, TestZilla
relies heavily on Windows-specific features in its imple-
mentation. In terms of scalability, both systems rely on
scalable cluster-based tools for test control. Unfortu-
nately, given that no published numbers on TestZilla’s
performance were available, a direct performance com-
parison could not be made.

ACME [13] provides a framework for automatically
applying workloads, injecting perturbations, and mea-
suring the performance and robustness of distributed ser-
vices based on user specifications written in XML. It tar-
gets both emulated network environments such as Emu-
lab and ModelNet as well as real wide-area testbeds such
as PlanetLab. In ACME, control, measurement, and in-
jection of perturbations is done through per-node sensors
and actuators which, in turn, are controlled through a
distributed query processor. Like DART and TestZilla,
control in an ACME experiment is done using a central-
ized experiment control node. Using the query processor,
measurements are taken by issuing queries which read
desired sensors on multiple nodes in the system. Simi-
larly, actions (e.g., rebooting a node, modifying a link’s
bandwidth) are invoked by issuing queries that invoke
appropriate actuators. Early experience using ACME to
evaluate the robustness of three key-based routing rout-
ing layers (Chord, Tapestry, and FreePastry) showed that

ACME was able to uncover a number of interesting prop-
erties and bugs under various workloads and perturba-
tions. Compared to DART, ACME shares many of the
same goals. Architecturally, however, ACME differs
quite a bit owing to its use of a distributed query pro-
cessor and the sensor/actuator abstraction as the basis of
its implementation.

7 Conclusion

We have developed DART, a framework for distributed
automated regression testing of large-scale network ap-
plications. We presented the DART system architecture
and described the mechanisms DART provides, includ-
ing scripted execution of multi-node commands, fault
and performance anomaly injection, and the runtime
layer that supports these mechanisms. We have im-
plemented a DART prototype that implements a use-
ful subset of the architecture and are using this proto-
type in ongoing testing and benchmarking of PIER, a
distributed relational query processor. Our prototype
is built on fast and efficient multi-node remote execu-
tion and file transfer primitives and incurs reasonable
overheads (e.g., 11.3% overhead for a PIER selection
query correctness test) for typical distributed tests of in-
terest. Future work on DART includes implementation
of additional test mechanisms (e.g., fault injection us-
ing Emulab’s event system), additional performance opti-
mizations, and further work on gaining experience using
DART to test PIER and other wide-area distributed appli-
cations. We believe that distributed testing frameworks
will be a key enabler towards rapidly building distributed
applications that are fast, robust, and deliver high perfor-
mance across the wide-area.

Acknowledgements

We would like to thank the Emulab team for providing
access to the Utah Emulab cluster and for being highly
responsive to numerous questions and various feature re-
quests.

References

[1] ANDERSEN, D., BALAKRISHNAN, H.,
KAASHOEK, F., AND MORRIS, R. Resilient
overlay networks. In Proceedings of the 18th

10

ACM Symposium on Operating Systems Principles
(October 2001).

[2] ANDERSEN, D. G., BALAKRISHNAN, H.,
KAASHOEK, M. F., AND MORRIS, R. Experience
with an evolving overlay network testbed. ACM
Computer Communications Review 33, 3 (2003),
13–19.

[3] ARPACI-DUSSEAU, R. H. Performance Availabil-
ity for Networks of Workstations. PhD thesis, Uni-
versity of California, Berkeley, 1999.

[4] BECK, K. Extreme Programming Explained: Em-
brace Change. Addison-Wesley Professional, Oc-
tober 1999.

[5] DABEK, F., KAASHOEK, M. F., KARGER, D.,
MORRIS, R., AND STOICA, I. Wide-area coop-
erative storage with cfs. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles
(October 2001).

[6] DEMERS, A., KESHAV, S., AND SHENKER, S.
Anaylsis and simulation of a fair queueing algo-
rithm. In Proceedings of the 35th IEEE Com-
puter Society International Conference (COMP-
CON) (March 1990), pp. 380–386.

[7] ELLEN W. ZEGURA, K. C., AND BHATTACHAR-
JEE, S. How to model an internetwork. In Proceed-
ings of IEEE Infocom ’96 (March 1996).

[8] FREEDMAN, M., FREUDENTHAL, E., AND

MAZIÈRES, D. Democratizing content publication
with coral. In Proceedings of the 1st Symposium
on Networked Systems Design and Implementation
(March 2004).

[9] HAND, S. Self-paging in the nemesis operating
system. In Proceedings of the 3rd USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation (February 1999).

[10] HUEBSCH, R., HELLERSTEIN, J. M., LANHAM,
N., LOO, B. T., SHENKER, S., AND STOICA, I.
Querying the internet with pier. In Proceedings of
the 29th International Conference on Very Large
Data Bases (September 2003).

[11] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZ-
ERWINSKI, S., EATON, P., GEELS, D., GUM-
MADI, R., RHEA, S., WEATHERSPOON, H.,
WEIMER, W., WELLS, C., AND ZHAO, B.
Oceanstore: An architecture for global-scale per-
sistent storage. In Proceedings of the Ninth inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(November 2002).

[12] MUTHITACHAROEN, A., MORRIS, R., GIL, T.,
AND CHEN, B. Ivy: A read/write peer-to-peer file
system. In Proceedings of the 5th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation (December 2002).

[13] OPPENHEIMER, D., VATKOVSKIY, V., AND PAT-
TERSON, D. A. Towards a framework for auto-
mated robustness evaluation of distributed services.
In Proceedings of the 2nd Bertinoro Workshop on
Future Directions in Distributed Computing (Fu-
DiCo II): Survivability: Obstacles and Solutions
(June 2004).

[14] PAI, V. S., WANG, L., PARK, K., PANG, R., AND

PETERSON, L. The dark side of the web: An open
proxy’s view. In Proceedings of the 2nd Workshop
on Hot Topics in Networks (November 2003).

[15] PETERSON, L., CULLER, D., ANDERSON, T.,
AND ROSCOE, T. A blueprint for introducing dis-
ruptive technology into the internet. In Proceedings
of HotNets-I (October 2002).

[16] PETROU, D., RODRIGUES, S. H., VAHDAT, A.,
AND ANDERSON, T. E. Glunix: A global layer
unix for a network of workstations. Software -
Practice and Experience 28 (1998), 929–961.

[17] RAMASUBRAMANIAN, V., AND SIRER, E. G. The
design and implementation of a next generation
name service for the internet. In Proceedings of the
ACM SIGCOMM ’04 Conference on Communica-
tions Architectures and Protocols (August 2004).

[18] RATNASAMY, S., FRANCIS, P., HANDLEY, M.,
KARP, R., AND SHENKER, S. A scalable content-
addressable network. In Proceedings of the ACM
SIGCOMM ’01 Conference on Communications
Architectures and Protocols (August 2001).

11

[19] RHEA, S., GEELS, D., ROSCOE, T., AND KUBIA-
TOWICZ, J. Handling churn in a dht. In Proceed-
ings of the USENIX 2004 Annual Technical Confer-
ence (June 2004).

[20] RIZZO, L. Dummynet and forward error correc-
tion. In Proceedings of the USENIX 1998 An-
nual Technical Conference (FREENIX Track) (June
1998).

[21] ROWSTRON, A., AND DRUSCHEL, P. Pastry:
Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In Proceedings
of the 18th IFIP/ACM International Conference on
Distributed Systems Platforms (November 2001).

[22] SAROIU, S., GUMMADI, K. P., AND GRIBBLE,
S. D. Measuring and analyzing the characteristics
of napster and gnutella hosts. Multimedia Systems
9 (2003), 170–184.

[23] SHENOY, P., AND VIN, H. M. Cello: A disk
scheduling framework for next generation operat-
ing systems. In Proceedings of the 1998 ACM SIG-
METRICS Conference (June 1998), pp. 44–55.

[24] STOICA, I., MORRIS, R., KARGER, D.,
KAASHOEK, M. F., AND BALAKRISHNAN,
H. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the
ACM SIGCOMM ’01 Conference on Communi-
cations Architectures and Protocols (September
2001).

[25] SUBRAMANIAN, L., STOICA, I., BALAKRISH-
NAN, H., AND KATZ, R. Overqos: An overlay
based architecture for enhancing internet qos. In
Proceedings of the 1st Symposium on Networked
Systems Design and Implementation (March 2004).

[26] VAHDAT, A., YOCUM, K., WALSH, K., MA-
HADEVAN, P., KOSTIC, D., CHASE, J., AND

BECKER, D. Scalability and accuracy in a large-
scale network emulator. In Proceedings of the 5th
USENIX Symposium on Operating Systems Design
and Implementation (December 2002).

[27] VOGELS, W. Testzilla: a framework for the
testing of large-scale distributed systems. Avail-
able from: http://www.cs.cornell.edu/
vogels/TestZilla/default.htm.

[28] WALDSPURGER, C. A., AND WEIHL, W. E. Lot-
tery scheduling: Flexible proportional-share re-
source management. In Proceedings of the 1st
USENIX Symposium on Operating Systems Design
and Implementation (1994), pp. 1–11.

[29] WAWRZONIAK, M., PETERSON, L., AND

ROSCOE, T. Sophia: An information plane for
networked systems. In Proceedings of the 2nd
Workshop on Hot Topics in Networks (November
2003).

[30] WHITE, B., LEPREAU, J., STOLLER, L., RICCI,
R., GURUPRASAD, S., NEWBOLD, M., HIBLER,
M., BARB, C., AND JOGLEKAR, A. An integrated
experimental environment for distributed systems
and networks. In Proceedings of the 5th USENIX
Symposium on Operating Systems Design and Im-
plementation (December 2002).

[31] ZHAO, B. Y., KUBIATOWICZ, J. D., AND JOSEPH,
A. D. Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Tech. Rep. CSD-
01-1141, University of California, Berkeley, Com-
puter Science Division, 2001.

12

