
User-centric Performance Analysis of Market-based
Cluster Batch Schedulers

Brent N. Chun and David E. Culler

University of California at Berkeley
Computer Science Division�

bnc,culler � @cs.berkeley.edu
http://www.cs.berkeley.edu/ � �

bnc,culler �

Abstract
This paper presents a performance analysis of market-
based batch schedulers for clusters of workstations. In
contrast to previous work, we use user-centric perfor-
mance metrics as the basis for system evaluation. Each
user is modeled as having a utility function for each job
which measures value delivered to the user as function of
execution time. Summing over all utility functions in the
workload, we use aggregate utility as a measure of over-
all value delivered to users. With aggregate utility as the
performance metric, simulations are used to quantify the
performance of both market-based and traditional batch
scheduling algorithms under a variety of synthetic work-
loads. Results show that an auction-based batch schedul-
ing algorithm improves performance by a factor of up to
2-5x for sequential workloads and up to 14x for highly par-
allel workloads compared to traditional scheduling algo-
rithms.

1 Introduction
Batch scheduling is a common paradigm for large-scale,
production cluster computing environments. Users submit
jobs in batch to a queue and a centralized scheduler de-
cides how to prioritize them and submit them for execution
on cluster nodes. Scheduling algorithms in these systems
must decide how best to prioritize competing jobs of vary-
ing levels of importance and how to manage queue lengths
so that response time does not become excessively large.
Effectively performing these tasks requires knowledge of
how users value the resources being competed for and hav-
ing a feedback signal that prevents users from submitting
unbounded amounts of work. Unfortunately, current ap-
proaches to batch scheduling provide little, if any, means
for users to express resource valuations and influence job
queue priorities. In addition, while feedback signals are
provided, there are often no associated incentives for users
to pay attention to and respond to them.

To address the shortcomings of traditional batch sys-
tems, we advocate use of market-based resource manage-
ment [3, 4, 6, 8, 10]. With market-based resource manage-
ment, computational resources are allocated through mar-
kets where the cost of using a resource is directly related
to supply and demand. Resource allocations are deter-
mined through use of economic mechanisms such as auc-
tions where users place explicit valuations on the resources
being contended for as expressed by mechanism-specific
“bids”. Explicit valuations provide systems with extra in-
formation which is used to optimize for user value as op-
posed to system-centric performance metrics such as mean
slowdown. Pricing combined with charging creates feed-
back which causes users to balance the amount of work
submitted to the system with the cost of obtaining associ-
ated resources. We hypothesize that explicit resource val-
uations and price feedback can lead to substantially higher
value delivered to users.

Previous work in market-based batch scheduling [5, 7,
10] has mainly used auctions as the economic mechanism
for resource allocation. Users assign bids to jobs which
reflect importance and bids are used in an auction to deter-
mine job priority in the queue. Compared to these efforts,
our work differs most notably in our use of user-centric
performance metrics as the basis for system evaluation.
In our analysis, each user is modeled as having a utility
function for each job which measures value delivered to
the user as function of execution time. User-centric per-
formance metrics are used which focus on user value as
opposed system-centric metrics which do not take utility
into account and thus are not good measures of how satis-
fied users were with their resource allocations. To measure
overall system performance in a user-centric manner, all
users should be taken into account and value delivered to
users should be the basis of performance. In this paper, we
use aggregate utility to quantify overall value delivered to
users.

1



The rest of this paper is organized as follows. In Sec-
tion 2, we provide an overview of cluster batch systems
and describe the three batch schedulers we compare in our
analysis. In Section 3, we describe our methodology for
performance evaluation and make a case for user-centric
performance metrics as the basis for system evaluation. In
Section 4, we present our simulation results which quan-
tify the benefits of market-based systems over traditional
approaches. Section 5 describes related work. Finally,
Section 6 concludes the paper.

2 Cluster Batch Schedulers
Batch systems are an essential part of production clus-
ter computing environments. With user resource demands
large enough to outstrip resource capacity on even the
largest of clusters, batch systems are important because
they allow incoming work to be assigned to cluster re-
sources without overloading the system. In batch sys-
tems, users submit jobs in batch and jobs are subsequently
queued for execution by a batch scheduler. As resources
become available, jobs from the queue are scheduled onto
free resources according to a scheduling algorithm which
determines how jobs in the queue are ordered for execu-
tion based on optimization of some performance metric.
In this section, we provide an overview of the three main
approaches to batch scheduling on clusters, highlight some
of the problems with existing approaches, and provide the
motivation for market-based cluster batch scheduling.

2.1 Scheduling Algorithms

Traditional batch scheduling algorithms prioritize the
queue based on optimization of system-centric perfor-
mance metrics such as mean response time. In doing so,
they afford users little or no control over how their jobs are
given priority in the queue. FIFO schedulers, for example,
order jobs based on arrival time and make no effort take
the importance of jobs into account. SJF, another common
policy, does not do much better. Jobs are ordered by CPU
lengths to minimize mean slowdown, but this algorithm is
suboptimal if job lengths are not directly correlated with
how users value the resources. Schemes that use multi-
ple FIFO or SJF queues with different scheduling priorities
are also ineffective without associated incentives control-
ling their use. Without additional incentives, there is noth-
ing to prevent every user from requesting service from the
highest priority queue.

Supercomputing centers augment traditional batch
scheduling algorithms with charging. In their most flexible
configuration, batch scheduling is implemented through a
set of FIFO queues each with a different scheduling prior-
ity. Users are free to assign their jobs to any of the queues.
When scheduling jobs on free resources, the batch sched-
uler chooses the earliest job in the highest priority queue

that non-empty. Each FIFO queue also has a charging rate
associated with it that is related to its priority. Higher
priority queues charge higher rates for computational re-
sources when jobs eventually execute. These charges cre-
ate incentives which prevent users from always assigning
their jobs to the highest priority queue. This policy, which
we refer to as PRIOFIFO, thus provides users with a way
to express coarse-grain, static valuations which influence
how soon their jobs are scheduled.

Market-based batch schedulers described in the litera-
ture [5, 7] have used auctions to determine the most eligi-
ble job. With auction-based scheduling, users assign bids
to jobs which reflect their valuations of the underlying re-
sources (i.e., important jobs have higher valuations). The
batch scheduler in turn uses an auction to order the jobs
in the queue based on the amount per unit of CPU time
the user is willing to pay. The most eligible job is the
one willing to pay the highest rate per unit of CPU time.
Because users can assign arbitrary bids, valuations can be
expressed at a very fine granularity, and because charg-
ing is associated with resource usage, incentives exist to
prevent users from always assigning the highest possible
bid. In this paper, we examine a market-based algorithm,
FIRSTPRICE, that uses a first price auction for scheduling
and allows users to assign time-varying bids which deter-
mine job priority in the queue. Charging along with finite,
periodically-funded bank accounts prevent users from as-
signing arbitrarily high bids.

3 Methodology
Our methodology for system evaluation is based on sim-
ulation, synthetic workloads and resource valuations, and
evaluation based on user-centric performance metrics. We
use simulation for performance analysis since it allows
us to examine the widest possible range of systems and
workloads. We use synthetic workloads and valuations in
order to examine performance sensitivity to variations in
workload parameters and how users value computational
resources. Finally, we evaluate the performance of both
market-based and traditional systems using user-centric
performance metrics as opposed to system-centric metrics
such as mean slowdown. We use user-centric performance
metrics because traditional performance metrics are not
consistent with total value delivered to users.

3.1 User-centric Performance Metrics

All users have some notion of value when running appli-
cations on a cluster. A user simulating a cure for can-
cer, for example, places higher value on those simulations
than, say, image processing jobs to create new images for
a web page. The importance of a job can viewed as a time-
dependent valuation of the resources being contended for.
These valuations have both a magnitude, which expresses

2



importance, and a rate of decay which reflects user sensi-
tivity to delay. Important jobs have higher valuations while
less important jobs have lower valuations. Intuitively, an
optimal batch scheduling policy ought to take these valu-
ations into account when assigning priority to jobs in the
queue. Unfortunately, traditional systems provide little, if
any, means for users to express resource valuations and in-
fluence queue priorities, and thus queue priority is rarely
aligned with user valuations of the underlying resources.

Market-based systems make resource valuations explicit
by allowing users to express resource valuations to the
system and influence their resource allocations. Using
this extra information, market-based batch systems opti-
mize for user value by assigning queue priorities based
on how much users value the resources. In this paper,
we assume valuations are piecewise-linear functions which
decay linearly over time as a function of slowdown (Fig-
ure 1). Value is assumed to be constant up to a slowdown
of 1 since users cannot expect a job to finish sooner than
it would with dedicated access. Value then decays linearly
until slowdown reaches some critical value, at which point
value delivered is 0 regardless of completion time. We as-
sume users have some tolerance for delays due to queueing
delays which is modeled by the slope of linear decay. We
call the length of time when value begins to decay to the
time when value decays to 0 the user’s delay tolerance and
measure it as a multiple of job length.

Immediacy

Importance

1 2 3 4

Delay tolerance

V
al

ue

Slowdown

Figure 1: Piecewise-linear valuation. Value delivered to
the user as a function of job slowdown.

In contrast to previous work, we use user-centric perfor-
mance metrics to evaluate system performance. As previ-
ously described, all users have some notion of value as-
sociated with each job submitted to the system. Given a

common medium of expression (e.g., currency in a market-
based system), value can be expressed concretely and val-
uations can be compared in a uniform manner for schedul-
ing purposes. To measure overall system performance in
a user-centric manner, all users should be taken into ac-
count and value delivered to users should be the basis of
performance. In this paper, we use aggregate utility as a
measure of overall value delivered to users. We use ag-
gregate utility as the metric since traditional performance
metrics do not explicitly take value into account and thus
are not accurate measures of total value delivered to users.
We compute aggregate utility by taking the value delivered
for each job, as computed by the corresponding user’s val-
uation, and summing over all jobs in the workload.

We use the sum of the valuations to compute aggregate
utility for both traditional and market-based systems. In
both cases, using the sum of the valuations is appropri-
ate since the bottom line for delivering value to users is
by definition the sum of the valuations. Using the sum of
the valuations also allows us to make meaningful compar-
isons between the two types of systems. To support these
types of comparisons, the economist’s view of periodic
funding of user bank accounts (positive utility) and costs
associated resource consumption (negative utility) are not
factored into performance when evaluating market-based
systems. Instead, we assume that cost only plays a role
in determining user behavior. For example, when auctions
are used to allocate resources, users take cost into account
when assigning their bids and do not assign high bids to
low valued jobs.

In the market-based systems we consider, the use of
funds is solely a means to ultimately deliver more value
to users. Funds have no intrinsic value and are only useful
in exchange for computational resources on a single clus-
ter. Because of this, it makes no sense to factor periodic
funding or costs into performance for market-based sys-
tems. If these variables were factored into performance,
then it would be possible that a market-based system could
“perform” better or worse than a traditional system even
when processing the same workload in an identical fash-
ion. In addition, resource management policies that ar-
tificially delay execution, while obtaining more periodic
funding, would also appear to be delivering better perfor-
mance when in fact they are actually delivering less value
to users. To avoid these anomalous results, we use cost
solely for modeling user behavior and assume that users
always assign bids based on true valuations.

3.2 Simulation Configuration

We have written a simulator called Stingray for flexible
simulation of various cluster resource management sys-
tems. Using Stingray, we have conducted a series of per-
formance sensitivity experiments comparing the perfor-

3



mance of an auction-based scheduling algorithm with two
commonly used traditional scheduling algorithms. The
system consisted of a 32 node cluster with single processor
nodes. Workloads consisted of 32 users submitting batches
(i.e., bursts) of sequential and parallel jobs with normally
distributed burst interarrival times, normally distributed
job CPU lengths, and either fixed (1 in the sequential case)
or uniformly distributed job parallel degrees. Valuations
were assumed to be bimodal where 80% of the valuations
come from a low normal distribution (low value jobs) and
20% of the valuations come from a high normal distribu-
tion (high value jobs). High valued jobs were assumed to
be, on average, 100x more important than low value jobs.
Modeling valuations as bimodal seemed natural and we
feel is reasonable assumption for many workloads. Finally,
since cluster workloads are often demanding, we also ex-
amined sensitivity to burstiness in the workload and vari-
ous levels of system utilization.

4 Performance Analysis
In this section, we analyze the performance of a market-
based batch queue system in terms of aggregate utility
while comparing it to two commonly used traditional al-
gorithms. We test our hypothesis that by allowing users to
express resource valuations that significantly more value
can be delivered to users. We test it by performing a se-
ries of experiments which measure performance sensitivity
to workload parameters and valuation distributions includ-
ing burstiness, utilization, parallelism in the workload, and
user sensitivity to delay. With the base performance es-
tablished, we then extend these results by examining what
performance gains can be achieved through use of preemp-
tion. Since scheduling decisions are not always optimal
due to the lack of future information, these experiments
quantify the performance gains of being able to correct
previous scheduling decisions which may no longer be op-
timal in light of new information.

We analyze three different algorithms for these experi-
ments: SJF (shortest job first), PRIOFIFO (i.e., supercom-
puting center policy), and FIRSTPRICE, a market-based
algorithm. Each algorithm imposes an ordering on how
queued jobs are scheduled onto the cluster. For SJF, it
is based on smaller job CPU lengths. For PRIOFIFO, it is
based on queue priority and arrival times. With PRIOFIFO,
users have their choice of submitting jobs to one of three
FIFO queues each with a different priority and charging
rate 1. The next job to be scheduled is always the ear-
liest job in the highest priority queue that is non-empty.

1We optimistically assume that prices are appropriately set so that
low valued jobs map into the lowest priority queue and high valued jobs
map into the highest priority queue. Assuming valuation distributions do
not change much over time, such prices might be set based on empirical
observations of usage of the different queues.

Finally, for FIRSTPRICE, queue ordering is based on user-
assigned, time-varying bids which specify value per unit
time. All three algorithms implement backfilling which
allows jobs farther back in the queue to be scheduled onto
idle nodes while the most eligible parallel job waits for
all its nodes to become available. (In no case does a back-
filled job delay the execution of the most eligible job in the
queue.) In all simulations, the batch scheduling algorithm
is run at periodic intervals, and at each interval as many
jobs as possible are scheduled onto available resources.

4.1 Explicit Resource Valuations

In these experiments, we quantify the value of having ex-
plicit resource valuations determine scheduling priority in
the queue. We do this by comparing the performance of
a market-based algorithm with explicit valuations (FIRST-
PRICE) with a traditional algorithm without explicit val-
uations (SJF). We conduct five experiments using syn-
thetic workloads and valuation distributions, each exam-
ining performance sensitivity to one particular aspect of
the workload. More specifically, we analyze performance
sensitivity to variations in resource valuations, user sen-
sitivity to delay, burstiness of job arrivals, system utiliza-
tion, and parallel in the workloads. The results from these
experiments demonstrate under what types of workloads
and in which regimes of operation market-based systems
are most effective compared to traditional algorithms. Fig-
ure 2 plots the results.

The results are consistent with intuition. The more vari-
ation in resource valuations, the more opportunities FIRST-
PRICE has to reorder the queue based on the valuations
and so performance should improve with the differences
in valuations. The more sensitive users are to delay, the
larger the benefit of being able to decrease queueing de-
lays for important jobs through assignment of high valua-
tions. As users become more sensitivity to delay, market-
based systems should be more effective. The burstier the
workload, the longer the queues and the more competition
there is for scarce resources. As burstiness increases, per-
formance should also increase since scheduling based on
valuations allows the system to focus on the jobs that are
delivering the most value. As system utilization increases,
so should the the probability of competition and so perfor-
mance should also increase. Finally, with more parallelism
in the workload, the more likely the most eligible job will
block waiting for all its required nodes to become free.
Head-of-line blocking increases queueing delays, creates
longer queues, and thus presents more opportunities for
market-based systems to reorder the queue.

Overall, we observe performance improvements of up
to 2-5x for sequential workloads and up to 14x for highly
parallel workloads when resource valuations are known.
These substantial performance gains can be directly at-

4



Benefit of Knowing Resource Valuations

0

1

2

3

4

5

6

1 2 4 8 16 32 64 128
High Value Mean / Low Value Mean

F
irs

tP
ric

e 
/ S

JF

(a)

Benefit of Knowing Resource Valuations

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 4 8 16 32 64
Delay Tolerance

F
ir

st
P

ri
ce

 /
 S

JF

(b)

Benefit of Knowing Resource Valuations

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 4 8 16 32 64
Job Burst Size

F
irs

tP
ric

e 
/ S

JF

(c)

Benefit of Knowing Resource Valuations

0.00

0.50

1.00

1.50

2.00

2.50

3.00

20.00 34.00 48.00 62.00 76.00 90.00
Utilization (%)

F
irs

tP
ric

e 
/ S

JF

(d)

Benefit of Knowing Resource Valuations

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 4 8 16 32
Max Parallel Degree (Uniform Distribution)

F
irs

tP
ric

e 
/ S

JF

(e)

Figure 2: Benefit of knowing resource valuations. This figure compares aggregate utility delivered to users when val-
uations are known (FIRSTPRICE) versus when they are not known (SJF). For sequential workloads, we observe that the
benefits of knowing valuations are most pronounced when workloads are bursty (c.) and when there is significant variation
in resource valuations (a.). In addition, we also see that as users become more sensitive to delay (b.) that the benefit
of scheduling based on valuations increases substantially. For even moderately bursty workloads, significant benefits are
obtained over a wide range of utilization (d.) due to competition in the queue. Finally, we see that as workloads have more
parallelism (e.), the benefits of knowing valuations increases significantly.

5



Benefit of Fine-grain, Time-Varying Resource Valautions

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 2 4 8 16 32 64
Job Burst Size

F
irs

tP
ric

e 
/ P

rio
F

IF
O

(a) Sequential jobs

Benefit of Fine-grain, Time-Varying Resource Valuations

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 4 8 16 32
Max Parallel Degree (Uniform Distribution)

F
irs

tP
ric

e 
/ P

rio
F

IF
O

(b) Parallel jobs

Figure 3: Benefit of fine-grain, time-varying resource valuations. This figure compares aggregate utility delivered to
users when valuations are fine-grain and time-varying (FIRSTPRICE) versus when they are coarse-grain and static (PRI-
OFIFO). For sequential jobs, we observe that coarse-grain, static valuations are just as effective as fine-grain, time-varying
valuations for workloads with varying levels of burstiness. (We observed similar results for other sensitivity experiments
for sequential jobs which are not shown here.) On the other hand, for parallel jobs, we observe that as parallelism in the
workload increases, so do the benefits of having fine-grain, time-varying valuations.

tributed to the use of fine-grain, time-varying resource val-
uations which determine priority in the batch queue. Fine-
grain valuations provide users with a mechanism to prior-
itize their jobs in the queue relative to other users jobs.
Charging combined with auction-based scheduling pro-
vides incentives which prevent users from assigning ar-
bitrary high bids and instead bidding based on their true
valuations of the underlying resources. Fine-grain valua-
tions alone account for the majority of the performance im-
provements. In addition, time-varying bids provide an ad-
ditional way for market-based batch schedulers to improve
performance. By allowing assignment of time-varying
bids, the batch scheduler always has a consistent view
of the current value of all jobs in the queue. When long
queues develop, valuations of the jobs in the queue change
due to different user tolerances to delay. Without time-
varying bids, scheduling would be based on old informa-
tion which is no longer valid.

4.2 Fine-grain, Time-varying Valuations

In these experiments, we quantify the value of having fine-
grain, time-varying valuations (FIRSTPRICE) determine
queue priority as opposed to coarse-grain, static valuations
(PRIOFIFO). We present results from two experiments
which analyze performance for both sequential and paral-
lel workloads. For sequential workloads, we repeat the ex-
periment for explicit valuations by examining performance
sensitivity to burstiness in the workload. For parallel work-

loads, we also repeat a previous experiment by examining
performance sensitivity to the degree of parallelism in the
workload. Figure 3 plots the results.

The results show that compared to an optimally con-
figured supercomputing center policy of having multiple
FIFO queues with different scheduling priorities, a first
price auction delivers up to 2.5x higher performance for
highly parallel workloads and comparable performance for
sequential workloads. For parallel workloads, this result
can be attributed to increased head-of-line (HOL) block-
ing in high priority queues for PRIOFIFO. As parallelism
in the workload increases, the probability that the most eli-
gible job in the queue blocks while waiting for all its nodes
to become available increases. Increased HOL blocking
in turn causes longer queues to form and consequently re-
duces the effectiveness of the high priority queues as a way
for high valued jobs to see small queueing delays. FIFO
processing of a long, high priority, queue with jobs of vary-
ing levels of importance and sensitivities to delay is sub-
optimal as queue length increases. On the other hand, for
sequential jobs, we observe that coarse-grain, static valua-
tions are just as effective as having fine-grain, time-varying
valuations. (We observed similar results for other sensitiv-
ity experiments for sequential jobs which are not shown
here.) This result can be attributed to smaller queueing
delays in the high priority queue for sequential workloads.

Based on our results, we advocate use of first price auc-
tions for batch scheduling of compute-intensive jobs for

6



several reasons. First, we showed that performance us-
ing a first price auction is universally better than both SJF

and PRIOFIFO under all workloads simulated. Second, the
amount of work needed to implement a first price auc-
tion is small. In this work, we optimistically assumed
that queues in PRIOFIFO were optimally priced so queue-
ing delays in high priority queues were small. In prac-
tice, this requires empirically determining prices and po-
tentially repricing queues based on changing demand. The
amount of work to implement this is likely to be more
than that required to implement a first price auction. Fi-
nally, first price auctions are easy for users to reason about.
Bids are scalar quantities which represent overall value and
charging is simple to understand. Supercomputing centers,
on the other hand, typically implement complex charging
algorithms which make it difficult for users to get a handle
on what is going on.

4.3 Preemption

In this section, we evaluate preemption as a means to cor-
rect previous scheduling decisions in light of new informa-
tion. We analyze preemption because we anticipate batch
systems can benefit by preempting low valued jobs to run
high valued jobs which had not arrived when the low val-
ued jobs were originally scheduled. To evaluate preemp-
tion, we assume preemption occurs whenever an pairwise
opportunity to improve performance arises. Preemption
occurs whenever swapping the execution order of some
running job with the most eligible job in the queue re-
sults in increased revenue for the system. Since we assume
users always assign bids which reflect their true valuations,
this strategy is pairwise optimal in terms of aggregate util-
ity. In all simulations, jobs are preempted at most once in
order to help avoid starvation.

Figure 4 plots the results for FIRSTPRICE with and
without preemption as a function of user tolerance to de-
lay. Intuition suggests that benefits of preemption should
increase with sensitivity to delay since the penalty for wait-
ing becomes larger with longer queueing delays. Surpris-
ingly, we see that only for the most time sensitive of users
does preemption actually make a difference and even then
the improvements are fairly small (up to 20%). (Other ex-
periments, omitted due to space constraints, also show ei-
ther little gain, no gain, or in some cases slight reductions
in performance.) The main reason for this result is ex-
pected queueing delay for high valued jobs. Since schedul-
ing based on resource valuations already provides high val-
ued jobs a way to bypass low valued jobs in the queue, any
benefits realized through preemption must provide high
valued jobs a way to wait even less in the queue. For the
workloads we examine, we observe that such opportunities
do not make a significant impact on performance since the
expected time for resources to free up is not very signifi-

Benefit of Preemption

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 2 4 8 16 32
Delay Tolerance

P
re

e
m

p
ti
o

n
 /

 N
o

 P
re

e
m

p
ti
o

n

Figure 4: Benefit of preemption. This figure compares
aggregate utility delivered to users using the FIRSTPRICE

algorithm with and without preemption. We observe that
preemption in batch environments delivers little or no ben-
efits except when users are highly sensitive to delay where
performance improves by at most 20%. Other experi-
ments, omitted due to space constraints, showed similar
results in all but very specialized cases.

cant.

5 Related Work
Spawn is the earliest known work in applying market-
based resource management for batch scheduling in dis-
tributed systems [10]. In Spawn, Vickrey auctions are used
to provide market-based resource allocation of dedicated
CPU time. Workloads are assumed to be tree-based, con-
current applications. Applications have funding rates as-
sociated with different nodes of the tree which are used to
purchase CPU resources for tasks associated with leaves
beneath those nodes. CPU resources are purchased by par-
ticipating in Vickrey auctions for dedicated slices of CPU
time which are held independently by each node. Which
auctions to participate in is (presumably) determined ran-
domly since no information is revealed through the Vick-
rey auction for balancing load. Through simulation and
measurement on a prototype implementation, their main
result shows that application funding rates are effective in
achieving proportional-share resource allocations. While
applications were allowed to express valuations through
bids, no evaluation was done based on aggregate utility.

Stoica’s microeconomic parallel scheduler [7] also takes
an auction-based approach using a first price auction for
market-based resource allocation of dedicated CPU time

7



for parallel jobs. In his system, jobs are assigned sav-
ing accounts which are used to purchase CPU resources.
CPU resources are purchased by participating in a central-
ized first price auction that allocates CPU time on all pro-
cessors. The winning job is the job with the highest bid
per unit time per processor and is scheduled immediately
if enough nodes are available. If enough nodes are not
available, the winning job blocks and is charged the time it
takes until enough free nodes are available. In other words,
there is no backfilling and jobs are charged for head-of-line
blocking. Through simulation, Stoica’s main result is com-
parable, and in some cases better, mean system and user
response times compared to FIFO and FIFO with backfill
scheduling policies. He also shows that income rates are
inversely proportional to mean response times. Compared
to our work, this work differs mainly in its use of tradi-
tional performance metrics as opposed to aggregate utility
in evaluating system performance.

Geweke’s economic batch queue [5] also uses a Vick-
rey auction for market-based resource allocation of CPU
time for parallel jobs on a cluster. In his system, jobs are
assigned bids which are used to purchase CPU resources
through a centralized Vickrey auction that allocates CPU
time on all nodes. Winning jobs are scheduled imme-
diately regardless of node availability through the use of
preemption – running jobs are preempted if they are out-
bid. The system was implemented through modification of
the PBS batch queue system and was deployed on a real
system. Unfortunately, demand was too limited to draw
any significant conclusions. Instead, results were obtained
mainly through simulation which essentially confirm pre-
vious results [4, 7] that higher bids yield smaller mean sys-
tem and user response times. Preemption, the most in-
teresting aspect of this system, was not evaluated at all.
Compared to our work, this work also differs in its use
of system-centric performance metrics as opposed to user-
centric performance for system evaluation.

In addition to market-based approaches, there is also
a body of work on the evaluation of traditional batch
scheduling algorithms for both clusters of workstations
and specialized parallel machines (e.g., massively parallel
processors) using traditional performance metrics. Repre-
sentative examples include [9] which evaluates three tra-
ditional batch scheduling algorithms (FIFO, SJF, LJF) for
clusters of workstations, [1] which evaluates batch sched-
ulers for the NEC Cenju-3 supercomputer, and [2] which
evaluates batch systems for the SGI Origin 2000 parallel
machine. In all cases, traditional performance metrics such
as average waiting time and average response time were
used as the basis for system evaluation. However, as al-
ready discussed, traditional performance metrics are gen-
erally not accurate measures of overall value delivered to
users. Thus, while a traditional algorithm may perform op-

timally based on some system-centric performance metric,
the end result will generally be that users are less satis-
fied with their resulting resource allocations compared to
a market-based approach.

6 Conclusion
In this paper, we have quantified the benefits of market-
based resource management for batch scheduling on clus-
ters of workstations. We made a case for user-centric per-
formance metrics as the basis for evaluating system per-
formance. We presented aggregate utility as one such met-
ric which measures overall value delivered to users. Us-
ing aggregate utility as the performance metric, our sim-
ulations showed that using a first price auction for batch
scheduling improves performance by a factor of 2-5x for
sequential workloads and up to 14x for highly parallel
workloads compared to a traditional shortest job first al-
gorithm. We also showed that compared to an optimally
configured supercomputing center policy of having multi-
ple FIFO queues with different scheduling priorities, a first
price auction delivers up to 2.5x higher performance for
highly parallel workloads and comparable performance for
sequential workloads. Finally, we showed that given the
ability to express valuations and influence queueing prior-
ity, preemption does not add significant value.

Our results demonstrate that market-based resource
management results in significantly more value delivered
to users under a variety of workloads compared to tradi-
tional approaches. These substantial performance gains
can be directly attributed to the use of fine-grain, time-
varying resource valuations which determine priority in
the batch queue. We saw that compared to no explicit
valuations, market-based systems are a huge improvement
since, without valuation information, traditional systems
must make assumptions on how users value computational
resources and that the cumulative effect of bad assump-
tions is significant. On the other hand, compared to coarse-
grain, static valuations, we saw that significant benefits
are achieved only for parallel workloads. This suggests
that supercomputing center policies are effective as long
as queues are priced so that queueing delays in high prior-
ity queues are small. Finally, we showed that preemption
does not improve performance since explicit valuations al-
ready decrease queueing delays substantially for important
jobs, thereby delivering most of the performance gains.

References
[1] Kento Aida, Hironori Kasahara, and Seinosuke Narita. Job

scheduling scheme for pure space sharing among rigid jobs.
In Proceedings of 4th Workshop on Job Scheduling Strate-
gies For Parallel Processing, March 1998.

[2] Su-Hui Chiang and Mary Vernon. Production job schedul-
ing for parallel shared memory systems. In Proceedings

8



of 15th International Parallel and Distributed Processing
Symposium, April 2001.

[3] Brent N. Chun and David E. Culler. Market-based propor-
tional resource sharing for clusters. Technical Report CSD-
1092, University of California at Berkeley, January 2000.

[4] Donald Ferguson, Yechiam Yemimi, and Christos Niko-
laou. Microeconomic algorithms for load balancing in dis-
tributed computer systems. In International Conference on
Distributed Computer Systems, 1988.

[5] Andrew Geweke. A system for batch-mode economic
scheduling of a cluster of workstations. Master’s thesis,
University of California at Berkeley, 2001.

[6] Mark S. Miller and K. Eric Drexler. The Ecology of Com-
putation, chapter 10: Incentive Engineering for Computa-
tional Resource Management. Elsevier Science Publishers,
October 1988.

[7] Ian Stoica, Hussein Abdel-Wahab, and Alex Pothen. Lec-
ture Notes in Computer Science, Vol. 949, chapter A Mi-
croeconomic Scheduler for Parallel Computers, pages 200–
218. Springer-Verlag, 1995.

[8] Michael Stonebraker, Robert Devine, Marcel Kornacker,
Witold Litwin, Avi Pfeffer, Adam Sah, and Carl Staelin.
An economic paradigm for query processing and data mi-
gration in mariposa. In 3rd International Conference on
Parallel and Distributed Information Systems, pages 58–67,
September 1994.

[9] Achim Streit. On job scheduling for hpc-clusters and the
dynp scheduler. In Proceedings of 8th International Con-
ference on High Performance Comtuping, December 2001.

[10] Carl A. Waldspurger, Tag Hogg, Bernardo A. Huberman,
Jeffrey O. Kephart, and Scott Stornetta. Spawn: A dis-
tributed computational economy. IEEE Transactions on
Software Engineering, 18(2):103–177, February 1992.

9


