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Abstract. We introduce a new distributed data structure, the Distributed-
Hash Queue, which enables communication between Network-Address
Translated (NATed) peers in a P2P network. DHQs are an extension of
distributed hash tables (DHTs) which allow for push and pop operators
vs. the traditional DHT put and get operators. We describe the archi-
tecture in detail and show how it can be used to build a delay-tolerant
network for use in P2P applications such as delayed-messaging. We have
developed an initial prototype implementation of the DHQ which runs
on PlanetLab using the Pastry key-based routing protocol.

1 Introduction

Delay-Tolerant Networks (DTN) [6] are network overlays that enable communi-
cation even in the face of arbitrary delays or disconnections. This is accomplished
by using a store-and-forward mechanism which holds packets at interior nodes
until forwarding to the next hop in the route is possible. Unlike IP, there is no
assumption of an instantaneous source-to-desination routing path nor are there
limitations placed on latency or packet loss. In essence, arbitrary delays along
the routing path are tolerated by incorporating storage and retransmission in
the network itself.

DTNs are useful for enabling messaging over so-called challenged networks
[5] which have inhernet network deficiences that prohibit communication using
standard IP. Examples of challenged networks include satellite-based communi-
cation, sensor networks, and ad-hoc mobile networks.

Unfortunately, challenged networks need not be so exotic. Current trends
indicate that the Internet itself is becoming a challenged network. The threat
of computer virus infection has increased the proliferation and aggressiveness of
Internet firewalls. In addition, the dwindling supply of public IP addresses has
led to the popularity of NAT gateways which effectively hides machines behind
private IP addresses [8]. In both cases, bidirectional communication has been
severly constrained (by limiting port numbers) or eliminated altogether (in the
case of NAT-to-NAT communication). This restriction severely limits the ability
of P2P applications to make use of these NATed nodes. What we are left with is



a challenged network where a growing population of private machines can only
communicate (unidirectionlly) with public machines.

In this paper we present a solution to this problem - the distributed hash
queue (DHQ). The DHQ provides durable network storage that can be used
to facilitate communication between disconnected peers. A sending host places
network packets into the DHQ and a receiving host subsequently pulls packets
from the DHQ. All queues are named using 160-bit keys and a queue lookup
(naming) service has been built on top of the Pastry key-based routing protocol.
The DHQ prototype runs on top of the PlanetLab network testbed and the
initial implementation consists of appoximately 2500 lines of Java code.

2 Simplified DTN Architecture

As defined by [5] and [4], a general delay-tolerant network provides several dif-
ferent classes of service and delivery options. These include 'Bulk’, ’Normal’, and
"Expedited’ service and ’Return Receipt’ and ’Secure’ delivery options, among
others. In addition, a DTN provides multi-hop routing across several regions
using name tuples.

In this paper, we provide an implementation of a simplified DTN architecture
than can be extended to the general case. Our architecture consists of a single
'Reliable’ class of messaging service and we use 160-bit hash keys for names
Delivery options are not provided by default, howevever, they can be added at
the application level if desired. Routing is limited to single *hop’ paths, from a
NATed network node to another NATed network. node. Multi-hop paths can be
built by inserting application-specific route headers into message contents but
that is beyond the scope of this paper.

To summarize, then, the DTN that we describe in this paper has the following
basic properties:

2-region connectivity. Messages can be routed between two disconnected net-
work regions, i.e. two NATed nodes.

160-bit names Message queues are named by 160-bit keys.

Reliable Delivery Option All message are reliably delivered in the face of up
to K network faults. The constant K is a configurable parameter but is set
to 3 by default.

3 Background

The DHQ system makes extensive use of the Pastry key-based routing (KBR)
protocol. Pastry is used to implement the DHQ name service and to help in
replicating queue state. While Pastry is used for the implementation, any KBR,
protocol would be sufficient. In this section, we give a brief background of the
Pastry system. For a complete description, please see [14].

In the most basic sense, Pastry maps 160-bit keys to IP addresses. Thus,
given any 160-bit key, Pastry will return the closest IP address to that key. This



provides the basis of the DH(Q name service, since we need to map queue names
(160-bit keys) to the host that owns the queue state.

In the Pastry system, the 160-bit key space is configured in a ring (from 0
to 2169 — 1) and the nodes are distributed along the ring. All nodes are assigned
a node ID which consists of a 160-bit key and a IP address. Using a consistent
hashing algorithm (e.g. SHA1), the IP address is deterministically hashed to
a key. In addition to being deterministic, the hashing algorithm also generally
provides a uniform distribution of keys. So the nodes are roughly distributed in
the 160-bit key space in a uniform manner. For an actual distribution of 8 nodes,
see Figure 1.
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Fig. 1. This figure shows eight Pastry nodes distributed along the 160-bit ID space.
The output is obtained by using the Gateway command 'Range’ which provides the
range of ID space for each node. Only the last decimal is displayed for each IP address
in dotted-decimal format.

An important feature of Pastry (and other KBRs) is that the average route
path from any node to the owner of an ID is log(N) in the number of nodes in
the system. In Pastry, in fact, the average route path is logy(IN) where the base
is 16. So the system can potentially scale to a large number of peers.

4 Distributed Hash Queues

The Distributed Hash Queue (DHQ) system provides a queueing service to both
public and private peers on the Internet. At the highest level of abstraction,
senders push messages to named queues and receivers pop messages from named
queues. A request-reply messaging service can be built on top of the queueing
service by using the tag field in the queue element structure to match requests
with replies.



Senders and receivers are assumed to be applications running on NATed
network nodes, e.g. a pair of instant-messaging applications. The DHQ service
consists of N nodes running on the PlanetLab which are publically addressable
(i-e. have public IP addresses) and participate in a single Pastry ring (group of
cooperating nodes). See Figure 2.

Gateway Pastry Ring
A

Fig. 2. This figure shows the logical structure of the DHQ service. Two communicating
NATed nodes, A and B, connect to the DHQ service via the closest respective gateway
node. Once connected, the NATed nodes can issue queue commands, e.g. push and

pop-

The DHQ system consists of three services: a reliable naming service, a gate-
way service (for accepting requests from NATed nodes), and the core reliable
queueing service. See Figure 3 which shows the layered structure of the DHQ
system.

4.1 Reliable Naming Service

All queue operations operate on named queues and must use the naming service
in order to locate the queue owners. The naming service provides a mapping
from queue names (160-bit keys) to a set of K locations which replicate the
queue state for redundancy. In addition, in order to prevent the naming service
itself from becoming a single point of failure in the system, names are replicated
across K nodes for fault-tolerance. (In practice, K is chosen to be 3.) The name-
to-queue-owners binding is replicated by making use of the Pastry replica-set
feature which finds the K closest nodes to a particular ID. A queue name is first
converted to a Pastry key key, and then the Pastry system is used to locate the
K node handles which may contain the name binding.



NAT Node A NAT Node B

Gateway Service Gateway Service
| 4 | 4
v \ v . \
DHQ Service DHQ Service
| 4 | 4
v \ v . ] \
Naming Service Naming Service
1 A 1 A
v \ v \
Pastry - o Pastry

Fig. 3. This figure shows the layered structure of the DHQ system. The arrows indicate
communication between layers and between entities. The DHQ and Naming services
are implemented as Pastry applications and communicate strictly through Pastry. The
NAT nodes connect to the DHQ service via the Gateway service which listens for
TCP/IP connections.

For example, consider a lookup of the queue named “foo”. First, the name
“foo” is converted into a Pastry key foog., which begins with the hex digits
0x338A.... A request message for a list of name replicas (LookupReplicas M essage)
is then sent to the Pastry node with ID closest to the key 02338A.... This closest
node responds with a list of K replica node IDs. A name lookup is then attempted
in parallel to each of these replicas, and the first valid response is returned to
the caller. (A similar mechanism is used by the PAST storage system [15].) See
Figure 4 which shows the operations involved.

Note that the initial LookupReplicasMessage is a single point of failure in
the present system. If the node Id closest to foogey is down then the protocol
cannot proceed. However, the protocol could be modified to find the second
(or N*h) closest node to the key foog.,. This second closest node would either
contain the name binding or be able to forward the message around the faulty
node to another node which could satisfy the name lookup. This is due to the
fact each Pastry node maintains a set of L neighbor nodes in the clockwise and
counterclockwise directions. Note also that Pastry periodically sends heartbeat
messages in order to determine and prune dead nodes. If a dead node is found,
ownership of the dead node’s ID space is transferred to live nodes. Thus, the
single point of failure only exists for a time equal to the heartbeat period and
the time to transfer ownership of the ID space.
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Fig. 4. This figure shows the steps taken during a lookup operation on the Reliable
Naming Service. First, a set of replicas is fetched from the node closest to the name
key. Then, a lookup request is multicast to these nodes and the first valid response is
used.

4.2 Gateway Service

In the DHQ system, the NATed peer nodes do not participate in the Pastry
ring, i.e. they do not own a part of the Pastry ID space. This is by design
since NATed nodes are assumed to be highly dynamic and would introduce a
high churn rate [13] into the system which would decrease stability. Instead,
NATed nodes communicate to the Pastry ring nodes using a Gateway Protocol
over standard TCP/IP. Commands are sent as human-readable single-line ASCII
strings in order to ease parsing and debugging. In addition, this simple protocol
makes the process of creating DHQ clients much simpler. The only requirement
for a DHQ client is that it must support TCP/IP and be capable of sending
ASCII strings. In fact, during the debugging process, a telnet client was used
to connect to the ring and issue push and pop commands. The list of gateway
commands is described below.

Alive queue_name lists the nodes which contain a live copy of queue_name.
This list decreases monotonically as nodes fail until the queue is fixed using
the Fix command (see below).

BlockingPop queue_name blocks until the queue has at least one element then
returns that element.

Create queue_name (I Paddressl,IPaddress2,etc.) creates a queue named
queue_name on the machines represented in the IP address list. In the case
that no list is given, the current gateway node and its neighbors are used to
replicate the queue.



Delete queue_name delete a queue from the system. This removes the name
queue_name from the naming service so that the queues are effectively
deleted.

Fix queue_name ensure that the queue name queue_name is K-replicated and
the queue state is K-replicated. For each queue, a Fix command is issued
periodically by the system (every 2 minutes) in order to maintain the repli-
cation factor of each queue.

Range This returns the ID space that the gateway node is responsible for. This
is used for debugging purposes and to map out the distribution of the ID
space to each node. See Figure 1 for a graph produced using the Range
command.

NameAlive queue_name - This returns the set of nodes that are replicating
the name binding for queue_name. This set is not usually the same returned
by the Alive command.

Peek queue_name - Return the first element from the queue queue_name with-
out removing it.

Pop queue_name - Destructively return the first element from the queue.

Push queue_name “value” - Push an element onto the queue queue_name
consisting of the string “value”.

Queuelnfo queue_name - Used for debugging. Return a string represntation
of the queue size and contents.

Where gqueue_name - Return the list of queue replicas. This is a superset of
the nodes returned by the Alive command.

For example, the following set of commands will create a queue named ’foo’
and push three items onto it:

1. create foo

2. push foo “First Element”
3. push foo “Second Element”
4. push foo “Third Element”

NATed nodes attach to Gateway nodes by using a bootstrap process that is
as follows. First, a NATed node contacts a seed node that it obtained via some
out-of-band process. Then, the NAT node executes the nearby-node algorithm
from [1] in order to find the closest (in terms of network latency) Gateway
node. In our experience, the nearby-node algorithm tended to be biased towards
returning the seed node and an improved algorithm based on Vivaldi [2] network
coordinates is currently underway.

Once the closest node is found, the NATed node opens up a socket connection
to the gateway over a well-known port number. Once connected to the Gateway
Service, the NAT node issues commands (one per line) and receives any responses
(e.g. to pop messages) over the network stream. If a connection is lost, the
Gateway can restart the bootstrap process to find a better node or try to connect
directly to the Gateway again. Gateway commands are translated directly into
queue operations which are then handled by the Reliable Queue Service which
is described below.



4.3 Reliable Queue Service

Queues are replicated across a set of K nodes (K is 3 in practice) which are
specified upon creation of the queue. The set can either be specified by the NAT
client or automatically picked by the DHQ system. The advantage of letting the
client pick is that locality can be optimized, while the advantage of letting the
system pick is that load can be balanced. In both cases, the creation of the queue
also creates a binding from the queue’s name to its queue replicas.

Queues are implemented as priority queues where the message timestamps
denote priority. This provides a total ordering on messages given synchronized
global clocks. Given weaker time synchronization, however, the priority queues
still serve a purpose: they provide a consistent ordering of packets in replicated
queues. Therefore, if messages are replicated across a set of K queues, the priority
feature ensures that messages will be seen by queue readers in the same order
regardless of which queue is accessed. In the face of message loss, ordering is still
preserved. For example, given messages m1, m2, m3 with increasing timestamps,
receivers will receive m3 before m1 if the message m2 is dropped. Implementing
an improved total-ordering policy is the subject of our current research.

After a name binding is found, the set of nodes which ’own’ the queue state
are returned - called the queue owners. The queue operation (e.g., push, pop,
peek) is then multicast to the queue owners. In the case of a push, the push
message is sent and control returns immediately to the calling program. For a
pop (or peek) operation, the message is sent and the first valid reply is returned
to the caller. (Valid replies are replies that are not errors.) Thus, if a queue is
originally owned by 5 nodes and 2 are currently down (or have been rebooted),
then three valid replies should be returned to the user. The first such valid reply
is used as the value of the pop, and the other two are discarded. (Optionally,
all replies can be returned to the user and the user can use a voting method or
some other protocol to decide the correct value to use.)

The set of queue operations that are supported includes the set of Gateway
commands plus some additional commands. Only the additional commands are
listed below:

CreateQueueReplica queue_name queue_state This message is sent, along
with serialized queue state, to a node in order to manually replicate a queue.

GetQueueState queue_name This command is used to fetch the entire state
of a queue from a remote node.

PingQueue queue_name Determine if a queue exists.

WatchQueue queue_name This message is scheduled periodically using the
Pastry schedule — message primitive. A WatchQueue message, when re-
ceived by the QueueService, will automatically fiz a queue and maintain
the invariant that the queue and its name binding has K replicas.

Push and pop operations are multicast to all of the K queue owners in order
to attempt to preserve queue consistency. For a push operation, we chose not to
use a synchronous two-phase commit protocol such as ABCAST [7], but rather
we use a best-effort send which attempts to send the message to all live queues.



While this does not guarantee consistency, with a large enough value of K it
does probabilistically guarantee that the message will not get dropped.

In order to preserve the queue state over long delays, it is important that the
queues be able to survive many faults. For example, in a delay-tolerant network,
days or even weeks may go by before a message can successfully be delivered.
Therfore, the DHQ needs to durably store messages so that they can survive
multiple faults. This is handled by the initial queue replication, and a periodic
process which re-replicates queue state every S seconds. In practice, we have
used a value of S to be 120 seconds, although this value is tuneable and should
be set according to the environment in which the DHQ is operating. In this
initial implementation, the faults that we are trying to survive are mainly the
periodic reboots of PlanetLab nodes. Currently, we are assuming fail-stop nodes
which simplifies the implementation. Future work will be to survive other kinds
of failures and to improve the consistency guarantees of the system.

4.4 Replication Factor

In this section we show that the choice of 3 as the replication factor for queue
names and queue state is a reasonable one. While it does not guarantee resiliency,
the replication factor does provide a probabalistically high guarantee against
data loss. A recent survey of the PlanetLab system, consisting of 242 nodes over
a period of three months shows that the number of simultaneous reboots (nodes
that reboot within 5 minutes of each other) is always less 8% and typically less
than or equal to 3 nodes. See Figure 5.
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Fig. 5. This figure shows the number of nodes that are unavailable (due to system
reboots) over time on the PlanetLab system.



If we assume that queues are replicated at three randomly chosen nodes, then
the probability of choosing three bad nodes in this system of 242 nodes is given
by:

B B-1 B-2
g, o, 0= 1)
N N_-1"N_2

where B is the maximum number of rebooted nodes at any time (i.e. bad
nodes) and N is the total number of nodes in the system. In the case of our
measurements, B is 18 and N is 242. Thus, the probabilty of choosing three bad
nodes is less than 1% (around 0.035%).

Since the queues are periodically re-replicated (every two minutes) to main-
tain the three replica invariant, we have reason to believe that the system will
do a good job of maintaining queue state. Current research is being done to
quantify how much queue state is lost and what countermeasures can be taken
to prevent queue state loss.

5 Related Work

In this paper, we have described a mechanism for allowing communication to a
NATed network node with a private IP address. Some related work in this area
has attempted to tackle this very problem including AVES [9] and i3 [16]. In
AVES, the NAT gateway (and DNS server for performance reasons) is modified
in order to support incoming connections to private IP hosts. A public network
waypoint address serves as the virtualization of the private IP address, and
relays IP packets from a public IP address to the private IP address through the
modified AVES NAT gateway. The main constaint on the AVES solution is that
it requires gateway software modifications which may not be administratively
possible by all NATed clients. In addition, while AVES does provide general bi-
directional communication from host-to-host, it still makes the assumptions of
low RTT and packet loss and therefore is not a candidate for building a complete
delay-tolerant network (DTN).

The Internet Indirection Infrastructure (i3) is another possible choice as a
substrate for building a DTN. In i3, packets are sent not to an IP address but
rather to a rendezvous node identified by an m-bit key, called k. An overlay
network (Chord is used in the i3 implementation) then routes data packets to
the node associated by successor(k) in the Chord system. Any interested parties
can register triggers with the rendezvous node (again, using the key k to identify
the rendezvous node). The triggers then forward packets to the interested nodes.
What i3 provides through this indirect communication is the ability for recipients
to be mobile. For example, if a host moves from address 128.A.B.C to 128.X.Y.Z,
then it simply must refresh its trigger to point to its new IP address. A recipient’s
mobility, however, is still limited to the public Internet since triggers forward
packets using IP. In addition, i3 does not provide network storage for packets
as is required by a DTN - packets are simply forwarded by a trigger as soon as
they arrive. If the destination host is currently unavailable, then the packet is



lost and must be retransmitted by the source node. In a DTN); it is the network
that provides network storage and/or retransmission before failing.

In general, key-based routing (KBR) [3] protocols such as distributed hash
tables (DHT), provide name indirection (using m-bit keys) and network stor-
age. However, they do not address the problem of communication to private IP
addresses nor do they provide a messaging service. In the case of DHTs, the
assumed workload is a collection of large files that map one-to-one with a key
identifier [12]. If a messaging layer were built on top of a DHT, then only one
outstanding message at a time could exist (given the one-to-one key-to-value
mapping). Thus, while a DHT solves some of the problems needed by a general
DTN (network storage and naming), it does not provide private IP connectivity
nor does it provide the right abstraction for messaging.

The POST system [10] provides secure and reliable messaging between dis-
connected hosts. Like DHQ, POST is built on top of key-based routing protocol
and provides message storage in the network. The main differences between the
two systems is the fact that the POST system design assumes bidirectional com-
munication between hosts (it is a P2P messaging system) and is focused on
secure messaging. While end-to-end security can be added on top of DHQ at the
application layer, it is not a focus of this paper.

The IP Next Layer (IPNL) system [11] provides connectivity to NATed hosts
by extending IP addresses to be a triple of a public IP address, realm ID, and
private IP address. Other network communication remains the same, so that the
IPNL does not handle the long storage delays that are inhernet to DTNs. Also,
while IPNL provides a general purpose NAT-to-NAT communication mechanism,
it does so by modificating the IP layer and therefore requires router modifica-
tions.

6 Conclusion

In this paper we have described the architecture and design decisions involved in
building a distributed-hash queue (DHQ) service. The primary reason for build-
ing such a service is to provide rendezvous communication for private NATed
peers in a P2P system. The requirements of any such service is to provide a set
of public waypoints and data durability. In our system, we use the PlanetLab
testbed to provide public waypoints. In addition, in order to survive faults and
provide long-lived data durability we have chosen to replicate both the queue
names and the queue state. The API of our distributed hash queue service has
been described in detail. Our planned future work includes evaluating the system
that we have implemented in terms of its performance overhead (over point-to-
point communication protocols) and resilience to faults.
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